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1. Aim of this thesis 

 The overall aim of this thesis is to increase knowledge on welfare of 

farmed fish through study of the effects of well-defined, relevant external 

stimuli on physiology and behavior. We investigated effects of acute and 

chronic discomfort, which served as models for the way current aquaculture 

practices may interfere with fish welfare. To apply acute discomfort we selected 

fin clipping and an electric shock, both applied to the tailfin. These treatments 

could evoke a pain sensation. For chronic discomfort we exposed fish for 

prolonged periods (weeks) to nitrogenous waste (ammonium, nitrite and 

nitrate) in the ambient water. Effects of discomfort on fish welfare were 

evaluated on the basis of physiological (e.g. endocrine stress responses, growth 

rate and osmoregulatory capacity) and behavioral parameters (e.g. scototaxis, 

i.e. a light/dark preference test and habituation to novelty). Our experiments 

were all carried out with fish kept in recirculating aquaculture systems (RAS). 

RAS offers the possibility to achieve a high production with minimal ecological 

impact (Martins et al, 2010). In the Netherlands essentially all fish aquaculture 

occurs in RAS. The species chosen reflect the fish commonly found in 

aquaculture practices (tilapia subspecies and common carp, Cyprinus carpio): 

African catfish, Clarias gariepinus is one of the major farmed species in the 

Netherlands; pikeperch is increasingly popular and a highly valued species and 

introduced to diversify aquaculture (Le-Francois et al, 2002). Zebrafish was 

used as the model of choice in the study on the effect of fin clipping on the 

habituation response, for which a protocol was recently published (Stewart et 

al, 2010; Wong et al, 2010). The versatility, ease of handling, inexpensiveness to 

grow and well annotated genome are reasons for its popularity as fish model in 

developmental biology, toxicology and genetics research (Ribas et al, 2013). 

2. Fish in aquaculture 

 Every day, millions of fish are used by humans in various different 

ways, such as for recreational fishing, as pets, as models for scientific research, 

and most importantly from a quantitative point of view, as raw material for the 

production of food, non-food products and feed. The human demand for 

protein and lipid cannot be satisfied by fisheries practices alone. Natural stocks 

of several fish species have drastically declined due to a variety of causes 

(Naylor et al, 2000). The world-wide aquaculture production nowadays almost 

matches the total fisheries production, and shows yearly increases of 7% on 

average, whereas the fisheries production has leveled off the past decade (FAO, 

2012). 
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 There are several types of aquaculture; cage or pen-net cultures at sea, 

basins in estuaries, pond cultures and land-based recirculation cultures are the 

dominant ones (EFSA 2008a; 2008b; 2008c; 2008d). In Europe (FEAP 2012), 

the culture of Atlantic salmon (Salmo salar; 1.48 million tons), rainbow trout 

(Oncorhynchus mykiss; 359 kilotons), European seabass (Dicentrarchus labrax; 

148 kilotons) and sea bream (Sparus auratus; 120 kilotons) rely mainly on cage 

culture at sea, whereas freshwater species such as common carp (Cyprinus 

carpio; 59 kilotons), tilapia species and African catfish (Clarias gariepinus) are 

produced mainly in ponds, in countries in Asia and Africa, but also in Eastern 

Europe. Asia accounted for 92% of world aquaculture finfish production by 

volume in 2010, whereas for Europe this was 5.2% (FAO, 2012). 

 As indicated above, in The Netherlands, production of farmed fish for 

consumption relies almost completely on culture in RAS. These are on-land 

systems that re-use 90-95% of the water by recirculating it through a series of 

treatments that remove the waste effectively to limit waste water (Bovendeur 

et al, 1987; Eding et al, 2006). The development of RAS enables fish farmers to 

be less dependent on natural water resources and reduce the impact on the 

environment (Piedrahita, 2003; Read and Fernandes, 2003; Martins et al, 

2010).  

 In recent years, more and more Norwegian salmon farmers now switch 

from flow-through systems to RAS for the production of fingerling fish (very 

young fish are produced in on-land systems), where they stay until a range of 

morphological, physiological and behavioral changes that pre-adapt the smolts 

to marine life occur. Production of smolts in RAS is on the rise to limit the intake 

of freshwater, a requirement of the European Water Framework Directive (EC 

Directive 2000/60/EC, 2000).  

 RAS allows optimal control over the culture conditions and results in 

better specific growth rates compared to pond or cage culture. However, RAS is 

labor intensive and a technically demanding form of aquaculture. A downside of 

RAS is production and accumulation of various nitrogen waste products, such 

as ammonia, nitrite and nitrate, which may negatively affect the welfare of fish. 

The stocking densities in RAS are high and this may lead to a (nitrogenous) 

waste accumulation problem. The focus on production (high stocking densities) 

is a key issue in aquaculture. A similar situation holds for the various 

treatments that fish in captivity have to undergo: handling, sorting, crowding, 

stocking, tank dimensions and substrate qualities are among the factors that 

influence normal behavior and may strongly call upon the animal’s adaptive 

capacity. Fish are exposed to a large variety of stimuli that, each or in 

combinations, will more or less substantially influence physiological and 

behavioral parameters, indicative for welfare of the animals.  



 
 

10  

3. Improving fish welfare in aquaculture 

 With a constant expansion and diversification of the aquaculture 

sector, the attention for the well-being of fish (fish welfare) has strongly 

increased. One could ask why? Welfare issues concern not only husbandry 

conditions during production, but also animal health and can be related to food 

quality and safety (EFSA, 2008e). An important barrier that may stand in the 

way of to optimize fish welfare are the economics of interventions at e.g. a fish 

farm. In the EU project Benefish (now completed), it has been shown that the 

interventions at the level of fish farms (better rearing procedures reducing 

mortalities and injuries) may not only improve fish welfare but also generate 

increased profits (Turnbull and Huntingford, 2012).  

 Due to increasing societal awareness, predominantly in Europe, 

Canada, Australia and New Zealand, the interest in welfare of fish in 

aquaculture is still growing (Branson, 2008; EFSA, 2009a; Van de Vis et al, 

2012). Fish welfare is of interest for many different stakeholders: the industry, 

consumers, non-governmental organizations, retailers, scientists (including 

animal ethicists) and policy makers. It is known that animal welfare is a multi-

sided concept and this raises the question how to define fish welfare, and how 

to measure it (Broom, 1998). Welfare can be defined as the quality of the life of 

an animal that is able to experience it (Torgersen et al, 2012). We will not 

discuss the concept of fish welfare in detail in this thesis, as it has been the 

subject in various review papers (Arlinghaus et al, 2007; Bracke and Hopster, 

2006; Branson, 2008; Duncan, 2007; Galhardo and Oliveira, 2009; Hagen et al, 

2011; Huntingford et al, 2006, Korte et al, 2007; Ohl and Van der Staay, 2012; 

Spruijt et al, 2001). Although for animal welfare various definitions exist, the 

issue is that poor welfare is associated with overtaxing the adaptive capacity of 

animals (allostatic overload; (McEwen and Wingfield, 2003). Allostatic overload 

may lead to chronic stress related physiology and behavior, pathology and 

increased mortality. Exposure to successive stressors or to an accumulation of 

stressors may overtax the adaptive capacity of an animal and lead to allostatic 

overload and poor welfare (Korte et al, 2007). In the model of allostasis fish 

welfare relates to stress load in a hyperbolic fashion. Low environmental 

challenges, i.e. hypostimulation, and environmental hyperstimulation may both 

produce poor welfare conditions (distress) (Korte et al, 2007). An 

environmental challenge varies as a result of intensity, duration, predictability 

and controllability of stressors. Exposure to a certain level of environmental 

challenges (eustress) will improve welfare (hyperbola above the neutral 

welfare line). When allostatic mechanisms in animal are over-stimulated or fail 
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to reset, allostatic overload arises; if not properly and timely counteracted, 

overload leads to poor performance, disease and death.  

Methods to assess how welfare of fish can be influenced heavily rely on 

indirect measurements, such as physiological and behavioral assessments. 

Studies on the cognitive status (Braithwaite et al, 2013), the perception of pain 

(Sneddon, 2004) and fear in fish (Galhardo and Oliveira, 2009) are to date 

scarce and therefore more studies are needed in this field.  

 In their review Galhardo and Oliveira (2009) conclude that in fish, the 

regulation of stress involving psychological components is not well studied. 

Though our knowledge on how fish perceive events is increasing rapidly during 

the past decade, in the view of some scientists fish lack the capacity for mental 

assessment of stress situations (Rose 2002, 2007; Rose et al, 2012). Braithwaite 

and colleagues (2013) recently prepared an overview on current knowledge on 

the capacities of fish to perceive emotions. These authors show that the fish 

species studied have sufficient neural capacities to support complex cognitive 

abilities and, potentially, the experience of emotion. The number of fish species 

studied for behavioral and brain functions with respect to cognition and 

emotion is, however, limited. Acquired knowledge is species-specific, 

depending on life stage, experiences during early life, habitat, personality of the 

fish (shy vs. bold; Galhardo and Oliveira, 2009) (Braithwaite et al, 2013). 

  

4. Acute discomfort: fin clip and electric shock as noxious, potentially 

painful stimuli 

 Pain is defined as an unpleasant sensory and emotional experience, 

associated with actual or potential tissue damage, or described in terms of such 

damages (IASP, 1979). In higher vertebrates (mostly mammals) two types of 

pain are generally distinguished: (1) acute and well-localized (transient) pain, 

mediated by myelinated A-δ fibers, and (2) chronic, poorly-localized dull and 

persistent pain, mediated by non-myelinated C-fibers (Lynn, 1994). In 

mammals and man, there is no doubt that acute pain is part of a basic biological 

warning mechanism, essential for survival of the individual and therefore of the 

species in question (Baars, 2001). However, especially when pain is very strong 

and prolonged (chronic), it may be detrimental and affect physiological and 

psychological welfare (Lamont et al, 2000). However, the degree of the 

experienced pain by mammals is difficult to determine, due to strong 

interindividual differences as to pain threshold and the many different 

modalities in which pain may occur.  

 Compared to pain research in mammals, the detection of (the degree 

of) pain in fish is an even bigger challenge. Fish are ectotherms (laymen say 
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cold-blooded), non-furry/non-fluffy, but slimy and expressionless animals that 

do not reveal any emotions, nor attract empathy at the first glance (Braithwaite, 

2010). Furthermore, while working with aquatic organisms, one should take 

into account that the simple procedure of removing an organism from its 

environment to apply a stimulus is already a stressful procedure by itself and 

can thus influence the outcome of the experiment. The right choice of adequate 

controls for handling stress is therefore a prerequisite to determine which part 

of the response is due to the stimulus and which to the handling procedure per 

se. So, how to find out if they perceive pain? 

 Gregory (1999) proposed three steps to assess whether fish are 

capable of pain perception. The first step is showing that neural elements 

involved in pain perception in mammals also occur in fish. The second step is to 

give a stimulus that has been validated to evoke pain in mammals, and compare 

the fish response with the mammalian one. The third step is to test if this fish 

response can be blocked or at least attenuated by known mammalian 

analgesics.  

 In 2002, nociceptors were for the first time identified in the trigeminal 

nerve of rainbow trout, which resulted in pain research in fish starting to 

attract more attention (Sneddon, 2002). When such trout were injected into the 

lips with either bee venom or acetic acid, substances used in mammalian pain 

research, significantly delayed feeding resumption and increased opercular 

beat rate were the result (Sneddon et al, 2003a; 2003b). Nordgreen and 

colleagues (2007) further showed that in Atlantic salmon, the capacity to 

perceive painful stimuli and the adequate nociceptive fibers for the detection of 

potentially painful stimuli are present. 

 Furthermore, while working with aquatic organisms, one should take 

into account that the simple procedure of removing an organism from its 

environment to apply a stimulus is already a stressful procedure by itself and 

can thus influence the outcome of the experiment. The right choice of adequate 

controls for handling stress is therefore a prerequisite to determine which part 

of the response is due to the stimulus and which to the handling procedure per 

se. 

 

4.1 Fin clipping 

 The tailfin clip was chosen as a noxious stimulus. Damage to the tail fin 

of fish is a common phenomenon and may result from natural injuries when 

fish fight or chase other fish (Chervova, 1997; Turnbull et al, 1998) and as a 

result of aquaculture practices, e.g. sorting, transportation; in laboratory 

settings fin clipping is used to mark fishes or genotyping; Sharpe et al, 1998). 
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Importantly, Chervova (1997) demonstrated that the caudal, dorsal and 

pectoral fins, and the skin around the eyes (as well as the more internal 

epithelium of olfactory sacs) are among the most sensitive nociceptive zones in 

fish. Damaged or cut fins will regenerate (Akimenko et al, 2003). Furthermore, 

it has the advantage that it does not cause serious side effect nor does it impair 

directly vital functions (Noble et al, 2012), and it can be applied conveniently in 

a standardized manner (Mogil, 2009). We reasoned therefore, that a tail fin clip 

is not a lasting and invalidating burden for the fish. We analyzed the tissue 

clipped by electron microscopy to assess whether and if so which nerve fibers 

were cut during the clip. The potentially noxious effect of a fin clip has not been 

investigated before. 

4.2 Electrical shock 

 Electric shocks are used in human pain research (Rhudy and Meagher, 

2000). Unlike a fin clip, an electric shock does not cause physical damages, if 

applied correctly. We applied electric shocks to the tail fin to compare their 

effects with those of fin clipping. The effects of electric shocks applied to the 

caudal tail were studied earlier in cod (Gadus morhua marisalbi) and steelhead 

trout (Salmo mykiss) (Chervova, 1997).  

 

4.3 Readout parameters for acute discomfort 

To find out whether clipping and electroshocks are noxious stimuli we 

studied a panel of primary, secondary and tertiary readout parameters for 

stress, including plasma cortisol, glucose, lactate, non-esterified fatty acids 

(primary), gill functional morphology (secondary), and behavior (tertiary). The 

rationale was that truly noxious (‘painful’) stimuli could evoke differential 

responses on top of the unavoidable stress responses related to the handling 

associated with the application of a clip or electroshock. 

Several behavioral tests were recently adapted from mammalian 

models (rodents) and validated for zebrafish (Champagne et al, 2010). Among 

these, the light/dark preference (Maximino et al, 2010) and the novel tank tests 

(Stewart et al, 2010; Wong et al, 2010) are of interest for pain studies in fish. 

Changes in place preference, exploratory, risk-taking and abnormal behavior 

after a noxious, potentially painful stimulus were proven to be reliable 

parameters to monitor pain handling in mammals, so maybe also in fish. Recent 

adaptations of automated video-tracking software (such as Ethovision; Noldus, 

Wageningen, The Netherlands) have greatly improved and facilitated the 

analysis of fish behavior. 
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4.4 Model species used to study acute discomfort 

 Common carp and tilapia subspecies were chosen as they are 

important species cultured worldwide (FAO, 2004; 2005; van Duijn et al, 2010); 

importantly, these fish are among the best studied in fish stress research 

(Bongers et al, 1998; Burns et al, 1995; Flik et al, 1993; Ibrahim et al, 2013). The 

zebrafish is a popular model in scientific research (Ribas et al, 2013), for which 

a large panel of molecular tools and behavior paradigms are available, and 

many of them online (zfin.org). The light/dark preference chamber and the 

novel tank test (Maximino et al, 2010; Wong et al, 2010) are two examples.  

5. Chronic discomfort: impacts of nitrogenous waste products  

 Nitrogenous waste products are an important aspect in control of 

water quality in RAS in relation to production and fish welfare. RAS are a labor 

intensive form of aquaculture with high investments and maintenance costs (De 

Ionno et al, 2006). The built of these systems allow for high fish densities and 

make the sector profitable (Martins et al, 2010). However, the high input of 

dietary nitrogen required in fast growing fish can lead to saturation and 

malfunctioning of the system and accumulation of nitrogenous waste in the 

form of ammonia, nitrite and nitrate. Fish, as all vertebrates, produce 

nitrogenous wastes through catabolism of amino acids (Wood, 1993); fish are 

either (mostly) ammonotelic (Smith 1929; Olson and From, 1971) or urotelic 

(Goldstein and Forster 1965; Cvancara, 1969), i.e. they produce 

ammonium/ammonia as end product of the ammonium cycle or urea, 

respectively. Urotely is less common than ammonotely. The former is well 

known from sharks that use urea as important compound to adjust plasma 

osmotic pressure (Smith, 1936); freshwater air-breathers increase their urea 

production when exposed to air (Saha and Ratha 1987), and so do fish living in 

extreme alkaline environments (Randall et al, 1989). Nitrogenous waste is 

always produced and may accumulate in aquaculture systems (obviously and in 

particular in recirculating aquaculture systems) as result of a variety of factors, 

including sub-optimal system performance (too low capacity of the bio-filter), 

high protein diets, incomplete digestion of food by the fish, and overfeeding to 

stimulate/hasten growth (Crab et al, 2007).  

5.1 The nitrogen cycle: ammonia, nitrite and nitrate  

 Ammonia (NH3) and its protonated ionic form ammonium (NH4
+) may 

severely impede growth and may easily reach toxic levels when fish are kept at 
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high density (Boeuf et al, 1999). The toxicity is particularly ascribed to the un-

ionized molecule which diffuses quickly (around 20 x 10-3 cm/sec) across cell 

membranes (Yuri et al, 1997; Colt, 2006). The ratio NH3/NH4
+ and therefore the 

ammonia toxicity is influenced by pH, ionic strength, pressure and temperature 

(Chen et al, 2012). Also the ionized ammonium may become toxic but at much 

higher concentrations compared to ammonia (Colt, 2006). 

 In present RAS, aerobic biofilters harbor denitrifying bacteria that 

convert ammonia via nitrite (NO2
-) to nitrate (NO3

-) in a two-step process (van 

Rijn, et al, 2006). Interesting developments in the dinitrification procedures are 

foreseen with the discovery of anaerobic ammonium oxidizers (microbes 

carrying out ammonium oxidation in the absence of oxygen, a process called 

anammox). Implementation of anammox reactors in RAS would allow for direct 

conversion of ammonium and nitrite into dinitrogen gas and water as end 

products, thus limiting the accumulation of nitrogenous wastes in the rearing 

water and therefore save significantly on the use of water (Kartal et al, 2011). 

Anaerobic ammonium-oxidizers have been demonstrated in marine RAS (Tal, 

2006) and more recently also in freshwater RAS (van Kessel et al, 2010).  

Uptake and excretion mechanisms of ammonia/ammonium clearly 

differ from those of nitrate and nitrite, although they which were originally 

suggested to be similar (Eddy and Williams, 1987; Williams et al, 1993). The 

mechanisms of branchial ammonia excretion remain under debate. In the 

‘traditional’ model for branchial excretion, NH3 diffusion is considered the 

predominant mechanism under normal conditions (Schram et al, 2010). At high 

ambient ammonia concentrations, when passive outward diffusion over the 

integument (gills) is impaired or even reversed, energized (active) NH4
+ 

excretion pathways are activated in the gills and contribute to ammonia 

removal (Wright and Wood, 2009). Recently, Rhesus (Rh) glycoproteins have 

been identified in pufferfish (Takifugu rubripes) gills (Nakada et al, 2007). The 

presence of these specific ammonia transporters has led to a revision of the 

excretion mechanisms of ammonia in fish (Weihrauch et al, 2009; Wright and 

Wood, 2009). The present view is that a ‘Na+/NH4
+ exchange complex that 

consists of a series of carrier proteins (Rhcg, V-type H+-ATPase, Na+/H+ 

exchanger NHE-2 and/or NHE-3, Na+ channel) in series secures movement of 

ammonia over the membranes of endothelial and branchial cells that form the 

barrier between blood and water (Wright and Wood, 2012; Shih, 2013). 

 Next to the gills, the intestinal tract must be considered as significant 

pathway for nitrogenous waste traffic. In the European flounder, Platichthys 

flesus water-born nitrite is taken up via the intestine (Grossel and Jensen, 

2000). In seawater species, that must drink to counteract osmotic water loss, 
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but also in freshwater fish that will drink when stressed (Kobayashi et al, 

1983), intestinal pathways for nitrogenous waste fluxes need consideration. 

5.2 Toxicity of nitrogenous waste compounds 

 High ambient ammonia concentrations are neurotoxic for fish (Wilkie, 

2002). Nitrite is toxic primarily by converting the oxygen carrier hemoglobin 

(Hb) into methemoglobin (MethHb), that does not transport oxygen (Kiese, 

1974). Nitrate toxicity is thought to be similar to that of nitrite, but a lower 

apparent branchial permeability to nitrate compared to nitrite in fish (Stormer 

et al, 1996) contributes to the notion that nitrate is less toxic for fish than 

nitrite. In freshwater, nitrite enters the organism primarily via the chloride cells 

in the gills (Bath and Eddy, 1980). At high external concentrations, part of the 

branchial chloride uptake is shifted to NO2
- uptake (Jensen, 2003). Therefore, 

fish with high branchial chloride turnover are more prone to nitrite toxicity 

(Williams and Eddy, 1986). This concerns mostly freshwater species, where 

active branchial chloride uptake is the main route of entry (Jensen, 2003). The 

presence of chloride ions in the water protects against nitrite toxicity, due to 

competition of Cl- and NO2
- at the carriers that mediate branchial chloride 

uptake (Crawford and Allen, 1977). This protective effect of chloride is varies 

significantly among species reflecting differences in chloride handling 

strategies (Lewis and Morris, 1986).  

In RAS, nitrite accumulates in the rearing water when incomplete 

oxidation of ammonium by the bio-filter to nitrate occurs (Kroupova et al, 

2005). Nitrite then accumulates in the blood plasma of the fish where it can 

reach concentrations over sixty times higher than those in the water (Fontenot 

and Isely, 1999). Thus the blood is the first and main target of nitrite toxicity. 

Nitrite penetrates the red blood cells and next hemoglobin is converted to 

methemoglobin. Methemoglobin concentrations in fish blood vary among 

species as well as among individuals in a population (Lewis and Morris, 1986). 

Concentrations 1.5 times above basal are considered potentially dangerous 

(Bowser et al, 1983). Nitrite toxicity in fish is not limited to methemoglobin 

formation; various key physiological processes such as ion regulation, 

respiration, heart action and kidney and gill functions depending on chloride 

handling (Kroupova et al, 2005) show correlation with elevated 

methemoglobinemia.  

As alluded to above, nitrate is considered the least toxic of nitrogenous 

waste products. However, fish farmed in RAS may be chronically exposed to 

nitrate levels ranging from 7 to 70 mM, depending on RAS design and 

management (Van Rijn, 2010). Accumulation of nitrate in RAS is the direct 
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consequence of the biological conversion of ammonia to nitrate via the nitrite 

pathway. Nitrate toxicity occurs mainly at high (millimolar) concentrations and 

long exposure times; larger fish tend to be more tolerant to nitrate exposure, as 

are fish in seawater (Camargo et al, 2005). An important side effect of nitrate 

accumulation is reduction to nitrite where and when the systems offers 

anaerobic conditions (Colt, 2006).  

5.3 Parameters of interest and experimental setup  

 Previous toxicological, acute-exposure studies on nitrogenous waste 

compounds mostly focused on 96 h LC50 values for ammonium, nitrite and 

nitrate. Such data are important, but less relevant for fish farmers, who are 

more interested in the concentrations at which growth and welfare of the 

animals become impaired. 

Physiological parameters, such as markers of stress and ionic 

imbalance inform us on changes in RAS and the coping abilities of the fish. Feed 

intake and growth rate tell us directly about the welfare situation. Stressful 

conditions may immediately impact feeding and growth, with the energy used 

primarily to properly cope with the stressor instead of being used for growth. 

Stress responses come with endocrine responses. Stress evokes adrenalin and 

cortisol responses, hormones with great impact on essentially every aspect of 

physiology (Wendelaar Bonga, 1997). Among the targets for stress hormones 

gills take an important position as their functioning and organization and 

histology gives a predictable readout for the stressor imposed. Last but not 

least, the brain is not only a target for stress hormones, in fact the brain of a 

vertebrate coordinates the stress response and for that very reason stress can 

be anticipated to modulate or alter various behaviors. 

We chronically exposed fish to different levels of ammonia, nitrite and 

nitrate and assessed effects of physiology and growth performance. We 

investigated realistic concentration ranges (i.e. concentrations seen in RAS). 

Our aim was to recognize subtle effects that may serve as early warning signals 

for the farmer, effects that may now go undetected but would allow action to 

restore proper conditions and, of course, give maximum guarantee of good 

welfare for the fish. 

 

5.4 The choice of the species 

 The African catfish is a robust, fast growing species and popular in 

Dutch aquaculture (van Duijn et al, 2010); indeed, it is a rapidly emerging 

species also in African aquaculture (FAO, 2012). Its robustness does not imply 
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that no or little attention should be paid to, for instance, water quality; all too 

often combinations of stressors (must) underlie unexpected calamities at farms. 

The sturdy African catfish offers the researcher an excellent and resilient model 

to unravel contributions of individual stressors found in a complex setting of 

RAS (simulated in the laboratory) with its nitrogenous-waste stressors.  

Pikeperch is being introduced in aquaculture in Northern and Central 

Europe next to common carp, rainbow trout and tilapia species to diversify 

aquaculture. It is a highly valued (and prized) rather stenohaline freshwater 

fish. In fundamental research this species is relatively new. Pikeperch is 

considered sensitive to stressors (Schulz et al, 2005). We reasoned that an 

analysis of its tolerance to nitrogenous waste products will benefit proper 

introduction of this species in intensive RAS farming, where stocking densities 

are higher than in open systems.  

6. Outline of this thesis 

 After a general introduction on acute and chronic discomforts that a 

fish may experience in aquaculture practices, three chapters are presented with 

studies in which noxious stimuli were given to carp, tilapia and zebrafish, 

followed by four chapters in which studies on effects of chronic exposure to 

nitrogenous waste were evaluated in catfish and pikeperch (see Fig. 1).  

In chapter 2, an electron microscope analysis of common carp 

(Cyprinus carpio) tailfin was performed to find ultrastructural evidence for the 

presence of A-δ and C-type axons, neurites transmitting pain signals in higher 

vertebrates/mammals. The tail fin of Nile tilapia (Oreochromis niloticus) was 

clipped and several hormonal, cellular and behavioral parameters were studied 

in a search for responses that might differ from those to the response due to 

mere handling and, therefore, could indicate perception of pain. In chapter 3, 

responses to a mild electric shock applied to the tailfin area were studied in 

Mozambique tilapia (Oreochromis mossambicus). Again, the responses were 

compared to acute stress responses evoked by the handling associated with the 

procedure. In chapter 4, the response to tailfin clipping was studied in 

zebrafish, (Danio rerio) by assessing parameters for anxiety and for habituation 

to novelty. The effects of elevated water content of ammonia (chapter 5), 

nitrate (chapter 6) and nitrite (chapter 7) levels in the water were studied in 

the African catfish (Clarias gariepinus). Effects of elevated water ammonia and 

nitrate concentrations were also tested in the pikeperch (Sander lucioperca) 

(chapter 8). In the general discussion, chapter 9, the results of the research 
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chapters are summarized and discussed for their significance in (RAS-based) 

aquaculture. 

 

 

 

 

 

 

 

 

 

 
Fig. 1. The different phases in an aquaculture setup in which the different chapters of this thesis can 
be positioned. Fin clipping as model for damage by intraspecific aggression or when the fish come 
into contact with man (chapter 2). In their growing phase in RAS, fish are kept at relatively high 
densities, which may lead to both accumulation of nitrogenous wastes (chapters 5, 6, 7) and 
enhanced aggressive behavior that could target the fins (chapter 4). When the market size is 
reached, fish will be slaughtered. Prior to slaughter, stunning is advised. Electrical stunning 
(chapter 3) is an increasingly used in Dutch recirculation systems. 
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Abstract 
 
The fish welfare debate is intensifying. Consequently, more research is 

carried out to further our knowledge on fish welfare in aquaculture. We define 
here a series of key parameters to substantiate an acute response to a 
supposedly painful stimulus: a standardized tailfin clip. 

Ultrastructural analysis of common carp (Cyprinus carpio) tailfin 
indicates the presence of A-δ and C-type axons, which are typical for 
transmitting nociceptive signals in (higher) vertebrates. In Nile tilapia 
(Oreochromis niloticus), responses to a tailfin clip were studied and the 
unavoidable acute stress associated with the handling required for this 
procedure. A series of key parameters for further studies was defined. The 
responses seen in ‘classical’ stress parameters (e.g., changes in plasma cortisol, 
glucose and lactate levels) did not allow discrimination between the clipping 
procedure and the handling stress. However, 3 parameters indicated a 
differential, stronger response to the clip stimulus itself: first, swimming 
activity increased more and clipped fish spent more time in the light (in a tank 
where half the volume is covered by dark material); second, the gill's mucus 
cells released their content as observed 1 h after the clip, and this response is 
transient (no longer observed at 6 h post clipping). Third, branchial Na+/K+-
ATPase activity assayed in vitro was not affected by the procedures, but a 
remarkable migration of Na+/K+-ATPase immunoreactive (chloride) cells into 
the lamellar epithelium was observed as of 6 h post clipping. We conclude that 
the differential response to clipping supports that this is a painful procedure 
that evokes a transient specific physiological status. 
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1. Introduction 
 

In humans, awareness of pain, fear and stress depends on functions 

controlled and executed by the highly developed hippocampus, amygdala, and 

cerebral frontal lobes and neocortex (Apkarian et al, 2005). In fish, the 

telencephalon, which will evolve to these cerebral structures in higher 

vertebrates, is far less complex and anatomically and fundamentally different, 

which has led many to conclude that fish cannot experience pain, fear or stress 

(Bermond, 1997, Rose, 2002). One of the endeavors in research on fish welfare 

is the assessment of consciousness which is at the basis of pain and fear 

experience. There is ample evidence to conclude that fish experience stress and 

successfully mount behavioral and neuroendocrinological responses to cope 

with stress (Wendelaar Bonga, 1997). 

Reviews by Braithwaite and Huntingford (2004) and Chandroo and 

colleagues (2004) present convincing evidence that fish, despite their less 

developed telencephalon, have learning abilities at a level that implies cognitive 

abilities. For some species (rainbow trout Oncorhynchus mykiss, Atlantic cod 

Gadus morhua, common goldfish Carassius auratus, and Atlantic salmon Salmo 

salar), the first evidence has been advanced that fish may have the capacity to 

perceive painful stimuli and have a nervous substrate to experience fear and to 

suffer (Sneddon, 2002; Nilsson et al, 2002; Nordgreen, 2009). However, it has to 

be emphasized that it is unlikely that fish, as well as other animals, except 

maybe higher primates, have the capacity to experience suffering as human do 

(Braithwaite and Huntingford, 2004). Nociception, the detection of potentially 

harmful stimuli, is at the very basis of experiencing pain, i.e., interpreting the 

nociceptive stimulus. Pain perception thus involves both the nociceptive 

sensory machinery and the actual translation of harmful stimuli to the feeling of 

pain. Fish should possess then both a nociceptive system and some cognitive 

capacities to experience pain in a human sense. Indeed, a limited, yet firm, 

literature supports that fish detect harmful stimuli, respond to nociceptive 

stimuli and may conceptualize pain (Braithwaite and Huntingford, 2004; 

Chandroo et al, 2004; Sneddon, 2002; Sneddon, 2003; Sneddon et al, 2003a and 

2003b). 

Next to the feeling of pain, fear and stress are motivational affective 

states that are relevant to fish welfare. In their seminal reviews Braithwaite and 

Huntingford (2004), and Chandroo and coworkers (2004) conclude that these 

affective states may well be attributed to fish. Recently, Nilsson and coworkers 

(2002) demonstrated explicit memory in Atlantic cod and, therefore, it is 
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reasonable to hypothesize that fish indeed have capacities to have some form of 

consciousness and be aware of pain. 

Studies that deal with the welfare of fish are limited to only a few out of 

an estimated total of 35,000 species; indeed, the knowledge on fish can only be 

called fragmentary. Beyond natural variation, human influences on fish, e.g., 

through prolonged farming and domestication, may impinge on welfare-related 

aspects such as aquaculture-related stress physiology (Pottinger and Pickering, 

1997). Clearly, big gaps in the knowledge on fish welfare exist. Nevertheless, 

the current literature suggests that fish deserve a better moral consideration 

than they have received so far (Lund et al, 2007). 

The international association for the study of pain (IASP) defined pain 

as an unpleasant sensory and emotional experience associated with actual or 

potential tissue damage, or described in terms of such damage (IASP, 1979). 

Although pain has a subjective component that is difficult to convey without 

words, a non-verbal individual can still experience pain and benefit from pain-

relieving treatment. In humans, methods to assess and quantify pain focus on 

cognitive abilities and subjective feelings. In studies on other mammals, 

emphasis is put on physiological parameters and behavioral activity, with little 

interest in the cognitive abilities and subjective feelings as is done for humans. 

However, few of these methods have been applied to demonstrate or quantify 

painful stimuli in fishes. A complicating factor in pain research is that the 

application of painful stimuli goes with an inherent stress response, for instance 

to handling (e.g., when blood is sampled) that interferes with the response to 

the fin clip. It is difficult to distinguish between stress responses and mild pain 

responses as these responses share a larger part of the stress physiology. 

In this study, behavioral and stress-endocrine responses of the Nile 

tilapia (Oreochromis niloticus) to a presumed pain stimulus (tailfin clip) were 

investigated. In common carp (Cyprinus carpio), the clipped tissue was 

investigated at the ultrastructural level to identify nerve fibers classified in 

mammals and rainbow trout as pain fibers. Swimming activity was monitored 

and the fish's preference to reside in the lightened or darkened section of a 

compartmented aquarium. The stress parameters plasma cortisol, glucose and 

lactate, were measured. Parameters for osmoregulatory performance including 

Na+/K+-ATPase enzymic activity and chloride cell abundance and position in 

gills and plasma concentrations of Na+, K+ and Ca2+ were determined. In 

addition, mucus content of mucus cells in the gills was quantified. 

This study was designed to discriminate the acute stress response 

inherent to the application of a fin clip as presumed pain stimulus from the fin 

clip proper through inclusion of the appropriate controls, and to select key 

parameters for future studies into this field of research. 
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Peripheral nerve fibers are categorized according to their diameter, 

conduction velocity and degree of myelinisation as A-α, A-β, A-γ, A-δ B- and C-

fibers (Erlanger and Gasser, 1937). The A-fibers are myelinated for fast 

conduction of action potentials. The A-δ fibers are involved in the transmission 

of well-localized acute pain, while C-fibers lack a myelin sheet (are very simply 

isolated by glia) and therefore slowly conduct action potentials and involved in 

poorly localized unpleasant slow dull pain (Sneddon, 2002; Pottinger and 

Pickering, 1997; Lynn, 1994). Fibers conducting in the velocity range of A-δ and 

C-fibers were identified in the trigeminal nerve of the rainbow trout and 

characterized as nociceptive fibers by Sneddon (2002). A-δ fibers (25%) were 

predominant over C-fibers (4%); displaying a different pattern compared with 

other vertebrates, where C-fibers can comprise from 50% (cat, human) up to 

65% (frog) of the total fiber type (Young, 1977). This difference in fibers 

composition is attributed to the water-to-land transition in vertebrate 

evolution (Sneddon, 2002). 

A tailfin clip was chosen as pain stimulus; all the handling around the 

clipping procedure, but omitting the clip, served as control procedure to 

quantify the handling stress. Fins are vulnerable body parts that are easily 

damaged as a result of aggressive behavior between fishes or of aquaculture 

practices, such as sorting and transport. 

2. Materials and methods 

2.1 Ultrastructural analysis of common carp (Cyprinus carpio) tailfin 

2.1.1 Nerve bundles 

 

Tailfin clips of common carp were immersed in glutaraldehyde (2.5% 

v/v), K2Cr2O7 (1% w/v) and OsO4 (1% w/v) in 0.15 M cacodylic acid (pH 7.5) 

and embedded in Spurr's resin. Ultrathin sections (70–90 nm) were cut with an 

ultratome and mounted on square mesh nickel grids. On-grid sections were 

post-stained for 2 min with uranyl acetate and then lead citrate for 2 min and 

rinsed thrice with doubly distilled water. Nerve fiber types in cross sections 

were categorized based on diameter and the presence of myelin to distinguish 

A-α, A-β, A-δ and C-fibers (Sneddon, 2002; Lynn, 1994) (Table 1). 
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Table 1. Neurite type frequency (in %) of 5 independent nerve sections in a tail of a common carp, 
following the classification as published for rainbow trout trigeminal nerve (average, Sneddon, 
2002). No statistical differences between average frequencies were found among the 5 nerve cross 
sections analyzed (chi-square test, P = 0.9). Classification of the neurite types is based on diameter 
(Lynn, 1994). hypoder. = hypodermis, lepido. = lepidotrichia. 

2.2 Responses of Nile tilapia (O. niloticus) to a tailfin clip 

2.2.1 Fish 

Female Nile tilapia, weighing around 200 g, were obtained from a local 

fish farm (Fishion Aquaculture BV, Mortel, The Netherlands) and after transport 

to the laboratory acclimatized for 2 weeks to the aquarium facilities of the 

Radboud University Nijmegen. The fish were kept in 140 L flow-through tanks 

with 9 fishes per tank; the fish received pellet feed at 2% of the total body 

weight daily (Trouvit, Trouw, The Netherlands). The water quality was 

monitored for nitrogenous waste products weekly (NO2
− = 0.5 mg/L; 

NO3
− = 12.5 mg/L; NH4

+ = 0.5 mg/L; O2 = 7.0 mg/L). Water pH (7.5 ± 0.2) and 

water temperature (25 ± 0.2 °C) were continuously monitored; the light regime 

was 12 h light: 12 h dark. The study was approved beforehand by the Animal 

Experimental Committee of Lelystad (Protocol: 2008139). 

2.2.2 Fin clipping 

Fish were caught with a net and restrained manually by one 

experimentator, while another clipped the caudoventral corner of the tailfin 

with a sharp, sterile pair of dissection scissors; next, the fish were returned to 

their original tank. In the control for handling stress treatment, fishes were 

handled the same way but not given the clip (instead gentle pressure was 

applied at the area the fin clip was provided to the other group). 

2.2.3 Experimental set 

Eight groups of 9 fish were used (Table 2). Two control groups were 

sampled 1 day prior the treatments of the 6 experimental groups. The results of 

the two control groups were pooled, since no differences were found between 

Fiber type 
Bundle 1 

(hypoder.) 

Bundle 2 

(hypoder.) 

Bundle 3 

(lepido.) 

Bundle 4 

(lepido.) 

Bundle 5 

(lepido.) 

Average 

(SD) 

Trigeminal 

nerve 

(Trout) 

C and A-δ 46.7 38.7 33.3 26.8 47.8 38.7 (8.9) 37 

A-β 40.0 48.4 56.9 57.1 41.3 48.7 (8.2) 53 

A-α 13.3 12.9 9.8 16.1 10.9 12.6 (2.4) 9 
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these fish. Clipped and control for handling stress groups were sacrificed at 1, 6 

and 24 h after the clip procedure. Fish were not fed 24 h before sampling. 

2.2.4 Sampling 

The fish were rapidly netted and deeply anaesthetized with 2-

phenoxyethanol (1 mL/L; Sigma-Aldrich, St Louis, USA); this procedure took 

less than 2 min. Blood sampled by puncture of the caudal vessels with a 

heparinized syringe fitted with a 25 Gauge needle was immediately centrifuged 

at 4 °C and 13,000 rpm for 10 min to separate plasma and cells; plasma was 

snap-frozen and stored at −20 °C. Two gill arches were excised and stored in 

SEI buffer (150 mM sucrose, 10 mM EDTA, 50 mM imidazole; pH 7.4) for later 

determination of Na+/K+-ATPase enzymatic activity or fixed in Bouin's fixative 

(15 volumes saturated picric acid: 5 volumes formaldehyde: 1 volume glacial 

acetic acid) for mucus cell and chloride cell histology. 

2.2.5 Dark-light preference and swimming activity 

Tanks were covered with black plastic to make 50% of the volume dark 

and 50% illuminated. The preference to reside in the light or dark and general 

swimming activity of the fish was determined by snapshots through 

undisturbed camera-viewing of the tanks in the week before the experiment 

(control) and after administration of the fin clips, prior to sampling. The fish 

were scored for presence in the dark or light part of the tank. Data are 

expressed as ratio of fish present in (as a group) in the light vs. the dark. A score 

of 1.0 indicated that the fish were equally divided over the light and dark part of 

the tank. Control situation was assessed 1 h for 3 days prior the experiment 

started for every tank. Different time points of the days were chosen to have an 

overview of the daily position in the tanks. Snapshots were taken every 2 min 

during this period, as well as for the first hour of the experimental period, and 

every 15 min from the second hour till the end of the experiment. 

2.2.6 Blood plasma 

Plasma was analyzed for cortisol as described in detail elsewhere (Metz 

et al, 2003). Activities of Na+, K+, Ca2+, pH, and concentrations of glucose and 

lactate in plasma were measured using Stat Profile pHOx plus analyzer (Nova 

Biomedical, Waltham, MA, USA). 
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2.2.7 Gill histology 

Gill samples fixed in Bouin's for 24 h, were dehydrated in a series of 

alcohols and embedded in paraffin. The samples were cut at 7 μm and sections 

stained for the presence of mucus cells and chloride cells. Mucus was stained 

with Alcian blue. The mucus cell density was estimated by counting Alcian blue 

positive cells in designated representative cross-sections stretching along 400 

lamellae of the sampled gill arch. Following stress stimuli, mucus cells expel 

their content resulting in a decreased frequency of Alcian blue positive cells. 

Mucus cell frequency was assessed for each fish twice by the same person. 

Mucus cells are found in this species on both the leading and trailing edge of the 

gill filament and were scored there to avoid any topological bias. Statistical 

analysis indicated that mucus cells are evenly distributed over the gill filament 

in this species (t-test for paired samples, P > 0.05; data not shown). Data from 

cell frequencies in the leading edge of the gill filaments are presented in this 

study. 

The chloride cells in the gills were detected through staining of their 

abundant Na+/K+-ATPase by immunohistochemistry with a monoclonal 

antibody raised against a chicken Na+/K+-ATPase alpha-subunit (IgGα5, 

designed by Dr. Douglas Farmbrough from the Developmental Studies 

Hybridoma Bank, Department of Biological Sciences University of Iowa, USA). 

The Na+/K+-ATPase α-5 antibody has been used in a number of studies to 

localize Na+/K+-ATPase in fish gills (Dang et al, 2000; Metz et al, 2003). Chloride 

cells predominate in the trailing edge of the filament (where the water flow 

exits the gill) and the adjacent interlamellar space of the gill filamental 

epithelium (van der Heijden et al, 1997) and, therefore, sections of the trailing 

edge were observed for chloride cell distribution. Under stressful conditions 

chloride cells may migrate into the lamellar epithelium (Schram et al, 2010); we 

scored our samples for this migration. Enzymic activity of Na+/K+-ATPase 

activity as a measure of sodium pump capacity of the gills was determined by 

measuring the K+-dependent and ouabain-sensitive ATP-hydrolytic activity in a 

gill homogenate (Metz et al, 2003). As the bulk of the Na+/K+-ATPase is 

restricted to the chloride cells of the gills, a homogenate results in proper 

reflection of the sodium pump capacity. 

2.2.8 Statistics 

Data are expressed as means and standard deviation (SD). Data were 

not normally distributed, and therefore, the non-parametric Kruskal–Wallis test 

was used throughout to assess statistical significance of differences. 
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3. Results 

3.1 Ultrastructural analysis of common carp (C. carpio) tailfin 

In carp tailfin clips, nerve bundles were found, both within the 

lepidotrichia segment and in the soft tissue (hypodermis) between the fin rays. 

The nerves were symmetrically distributed (Figs. 1 and 2). Morphometric 

analyses revealed 4 categories of neurites, 3 types of myelinated A-fibers and 1 

type of unmyelinated C-fibers (Fig. 2). Neurites in five nerves were analyzed for 

diameter to score them as C and A-δ, A-β and A-α type (Table 1). The neurite 

type distributions in the nerves were tested for homogeneity (chi-square test of 

homogeneity of proportions, P > 0.05). 

3.2 Responses of Nile tilapia (O. niloticus) to a tailfin clip 

Control fish preferred the darker side of the tank (Fig. 3). Following the 

tailfin clip, the fish showed increased swimming activity and more random 

movement through the tank. This response was visible from 1 h post treatment 

(significantly different that the control) and stronger at 6 h after the clip 

(significantly different than the control and stress group, Kruskal–Wallis test, H 

(6, N = 589), P < 0.01) and had faded after 24 h. In the handling stress groups, 

the effect on swimming activity was mild at 1 h after handling and had faded as 

off 6 h following stress. 
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Fig. 1. A. nerves in tailfin of common carp (x 200), the red box is detailed in B, and shows a 
transverse section of the interior of the lepidotrichia segment of the tail ray showing 2 nerves (EM, 
Scale bar = 5 μm). 1: nerve bundle, 2: blood vessel, 3: lepidotrichial hemisegment. 
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Fig. 2. Nerve fibers in tailfin of common carp (TEM, scale bar = 500 nm). Both C-fibers (1) and 3 
categories of A-fibers (2) are present within the nerve. (3) Schwann cell producing the myelin 
sheets around A-fibers. Black spots in the neurite neuroplasm represent microtubules. 

Fig. 3. Dark/light preference of Nile tilapia, in function of treatment. Compared to control, 
untreated fish, a fin clip induces a larger shift in preference than the handling stress alone. This 
effect lasts for at least 6 h. Different letters stand for significant differences at P = 0.05 (Post-hoc 
multiple comparisons after Kruskal–Wallis, H (6, N = 589), P < 0.01). 
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Table 2. Plasma parameters and branchial Na+/K+-ATPase activity of Nile tilapia. Data are 
expressed as mean and standard deviations (SD). Different letters indicate significant differences at 
P = 0.05 (Post-hoc multiple comparisons after Kruskal–Wallis).  
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3.2.1 Stress and plasma analyses 

Data on plasma concentrations of cortisol (Kruskal–Wallis test, H (6, 

N = 71) = 44.60, P < 0.01) and glucose (Kruskal–Wallis test, H (6, 

N = 71) = 41.07, P < 0.01) (Table 2) showed the predictable changes imposed by 

stress, but these parameters lack the resolution to discriminate between a clip 

and handling stress. Basal values in the untreated controls are in line with 

values reported for fish in stress-free conditions (Auperin et al, 1997). 

3.2.2 Ionoregulation related parameters 

The plasma levels of Na+, K+ and Ca2+ and the plasma pH are shown in 

Table 2 (Kruskal–Wallis tests: Na+: H (6, N = 71) = 15.31, P = 0.018; K+: H (6, 

N = 71) = 11.12, P = 0.085, Ca2+: H (6, N = 71) = 15.22, P = 0.019; pH: (H (6, 

N = 71) = 30.94, P < 0.01). 

 The Na+/K+-ATPase enzymic activity transiently increased 1 h after the 

fin clip, although this effect was not statistically significant (Table 2) (Kruskal–

Wallis test, H (6, N = 71) = 8.32, P = 0.22). No differences in Na+/K+-ATPase 

activity were found among the groups tested. 

Both clipping and handling stress-induced migration of chloride cells 

towards lamellar regions. This migration was observed at 6 h post treatment 

and lasted at least for 24 h (Fig. 4). The cells had migrated to the tips of the 

lamellae. 

3.2.3 Mucus cells 

Mucus cells in the control group are observed between the lamella in 

the filamental epithelium, in the same region where chloride cells are found 

(Fig. 5A). In response to the tailfin clip, 1 h after the clip (Fig. 5B), the frequency 

of mucus-containing cells had drastically decreased (Kruskal–Wallis test: H (6, 

N = 49) = 15.7, P = 0.016). This we take to indicate stress-induced release of 

mucus. However, this response was not observed in any of the other groups and 

thus allows discrimination between handling stress and clipping. At 6 h and 

24 h after the clip (Fig. 5C), mucus cells had restored their mucus content to 

control levels. In the groups at 1 h, 6 h and 24 h following handling stress, no 

difference in mucus cell frequency was found compared to the controls (Fig. 6).  

Fig. 5 summarizes the quantification of mucus cell frequencies in 

controls and all experimental groups. 
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Fig. 4. Chloride cells (cc) of Nile tilapia, seen as dark dots with examples encircled, are situated in 
the filamental epithelium at the base of the lamellae (gl). Control fish A. In the 6 h and 24 h post 
treatment groups, chloride cells had migrated towards the apices of the lamella (arrow) B. This 
phenomenon was observed in both the clipped and handled fish. cc: chloride cell, gf: gill filament, gl: 
gill lamellae. 

 

 

Fig. 5. A. mucus cells (arrow) of Nile tilapia 
containing mucus and stained with Alcian blue 
show up as black dots between the lamella (gl) 
in the filamental epithelium. B. in the group 
analyzed 1 h after the tailfin clip, mucus was 
secreted from the cells and the number of 
visible mucus cells decreased. C. at 6 h and 24 h 
post treatment, the mucus cells have recovered 
and newly produced mucus is visible in the 
cells. Due to histological procedures, mucus 
normally (and in the in-vivo situation) covering 
the epithelium is mostly washed away. gf: gill 
filament, gl: gill lamellae. 
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Fig. 6. Quantification of the mucus cells frequency in gills of Nile tilapia, in function of treatment. A 

significant decrease in mucus-filled mucus cells in the gill filaments in the 1 h after fin clip group. In 

the accompanying stress group, this decrease was not observed. Different letters stand for 

significant differences at P = 0.05 (Post-hoc multiple comparisons after Kruskal–Wallis). 

4. Discussion 

4.1 Ultrastructural analysis of common carp (C. carpio) tailfin 

This study investigated acute physiological and behavioral responses of 

Nile tilapia to a presumed painful stimulus and the stress response inherent to 

the application of the painful stimulus (i.e., the handling to clip the tailfin). In 

carp, the nerve in fin clips fulfilled all requirements to be designated as nerves 

that can carry noxious stimuli. Nervous tissues were observed in similar region 

of tail of the false mouth-breeder tilapia, Tilapia melanopleura (Becerra et al, 

1983). 

Nerves bundles were found between and within the fin rays. Four 

different types of neurites were identified in the nerves on the basis of their 

diameter (Sneddon, 2002; Lynn, 1994). C-fibers and A-δ fibers are involved in 

pain perception. In mammals, the unmyelinated C-fibers mediate slow dull pain 

signals and the myelinated A-δ fibers mediate acute pain (Sneddon, 2002; 

Erlanger and Gasser, 1937; Lynn, 1994). The presence of these 2 types of fibers 

in the clipped tissue, combined with the behavioral and physiological 
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parameters, support strongly that Nile tilapia discriminate nociceptive stimuli 

from handling stress, a conclusion in accordance with recent literature (Munro 

and Dodd, 1983; Braithwaite and Huntingford, 2004; Chandroo et al, 2004; 

Sneddon, 2003; Huntingford et al, 2006; Reilly et al, 2008a; 2008b). 

The presence of nerves with remarkably similar neurites as seen in 

mammalian (and trout) nerves that carry noxious signals, makes the fin clip an 

easily applied stimulus to study acute pain responses in fish. 

The transient character of the response to the handling stress per se 

and the clipping indicates that full recovery from this invasive procedure takes 

at least 6 h. 

 The relative abundances of C-fibers and A-δ fibers among the neurites 

we scored in cross-sectioned nerves are similar to those reported for the 

trigeminal nerve of rainbow trout (Sneddon, 2002). In trout, the low 4% C-

fibers clearly contrasts with the percentage in terrestrial vertebrates where this 

type of neurite may represent 50% (Young, 1977) This low C-fibers percentage 

was also found in our study where it was estimated to ± 5% of the total amount 

of fibers. 

The presence of C-type fibers in fish provides a further substrate for 

the discussion on pain perception in these animals. The 6 h duration of 

behavioral response in our tests suggests that signals comparable to those 

transducing lasting dull pain in mammals are carried by C-fibers (Sneddon, 

2002; Lynn, 1994). 

The presence of nerves in the carp tailfin with characteristics of pain 

nerves found in trout and mammals warrants similar analyses in other species 

of fish including, of course, Nile tilapia. We will analyze tissues at vulnerable 

sites such as the fins, opercula, mouth and lips and skin for neurites and 

through immunohistochemistry check whether these neurites penetrate the 

skin epithelium as seen in mammals (Oaklander, 2001). 

4.2 Responses of Nile tilapia (O. niloticus) to a tailfin clip 

Nile tilapia that receives a fin clip show more swimming activity and 

less preference for the darker part of the tank compared to controls. This 

response was found both 1 h and 6 h after the fin clip and indicates that the 

presumed harmful clip experience affects behavior and is remembered for 

several hours. Gill Na+/K+-ATPase activity, the enzymic correlate of the sodium 

pump, increased transiently in the fish that received the fin clip. This mild effect 

was only seen in fish 1 h after the fin clip. We speculate that the clip is a painful 

stimulus and resulted in a stronger adrenergic response, which evoked a 

temporary increased epithelial permeability to water and ions. An enhanced 
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sodium pump activity could counteract the imminent threat of ion leakage. This 

assumption is corroborated by the constant plasma ion levels observed. 

A similar transient response was seen in the branchial mucus cells that 

secreted their content 1 h after a clip, an effect not seen after the handling 

stress only, and this discriminates again the clipping procedure from the 

handling and suggests that clipping could impose pain. The mucus secretion 

would reflect than a stronger adrenergic response induced by the fin clip. There 

is a neurological substrate for this reasoning, as we found nerves in the clips 

that fulfill all criteria for nerves that can transmit noxious, potentially painful, 

stimuli. 

The fish that received the fin clip increased their swimming activity for 

at least 6 h and this was not observed in handled groups. In an earlier study, it 

was shown that rainbow trout enhanced their ventilation behavior as well as 

delayed time to resume feeding for several hours, following a noxious stimulus, 

as we observed here. Clearly, behavioral studies are instrumental to study pain 

perception in fish (Sneddon, 2003; Sneddon et al, 2003a). 

The plasma cortisol level increased in response to handling and 

clipping, but did not differ between the two conditions. Basal plasma cortisol 

levels in our fish were in the range considered normal (27.6–55.2 nM; 

Wendelaar Bonga, 1997). The handling and clipping increased cortisol levels up 

to 334.6 (292.2) nM and 256.4 (139.9) nM 6 h post treatment for the fin clipped 

and handling controls, respectively. Increases up to 165.6 nM (60 ng/mL) are 

generally referred to as a mild response, while rapid increases above 276 nM 

(100 ng/mL) are generally considered to reflect a severe stress response 

(Wendelaar Bonga, 1997). When fish experience chronic stress, plasma cortisol 

level should remain elevated compared to controls (Wendelaar Bonga, 1997), 

but in our fish cortisol levels returned to control values by 24 h, which indicates 

that the fish recovered from the procedures. A significant inter-individual 

variation, as indicated by large standard deviations, was observed at 6 h 

following the clipping or handling. Four fish had cortisol levels above 276 nM, 

interpreted as severe stress, two individuals had values that go with mild stress 

and three had cortisol levels comparable to controls. This suggests either a 

strong individual subjective element, or individual variation related to 

differences to neuroendocrine responses. So called proactive fish may show a 

flight–fight response by high activation of the brain–sympathetic–chromaffin 

cell axis, while reactive fish may show a freeze-hide response that is 

characterized by an activation of the hypothalamo–pituitary–interrenal axis 

(Henry and Stephens, 1977). 
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In the same species as used here, acute intense light was reported to 

induce cortisol to rise from less than 100 nM to over 500 nM; after 8 h cortisol 

levels had returned to basal (Biswas et al, 2004). Copper exposure may induce 

even higher cortisol levels (over 600 nM; Monteiro et al, 2005). Such results 

indicate that fin clipping represented a relatively mild stress when evaluated by 

cortisol response. The individual variation in basal levels and in cortisol 

responses confound these parameters as suitable indicator of pain; only if 

multiple samples of the same individual are collected one could possibly assess 

differences in sensitivity towards painful stimuli or differential response to 

handling and clipping. Clearly, the behavioral response has more potential to 

make such discrimination. 

Plasma glucose and lactate levels followed the changes observed in 

cortisol levels, with mildly increased glucose levels compared to the controls, 

but no differences between the pain and stress groups. Monteiro and colleagues 

(2005) reported glucose levels between 1.32 and 3.03 mM in control and 

copper-exposed Nile tilapia, values in line with those measured in the present 

study for control and stressed fish. Clearly this parameter is suited to indicate 

stress but lacks the resolution to discriminate between handling and clipping. 

Lactate levels had slightly decreased 6 and 24 h post treatment, and no 

difference between the stress and pain groups was observed (Kruskal–Wallis 

tests: H (6, N = 70) = 24.22, P < 0.01). The lower levels of lactate do not seem to 

correlate with enhanced swimming activity induced by the handling stress or 

clipping procedure, for which we have no explanation. 

Concentrations of Na+, K+ and Ca2+ as well as plasma osmolality were 

essentially unchanged after the fin clip and handling. This supports the relative 

mildness of the stressor applied and indicates no major loss of control over 

permeability to water and ions, as is often seen in severely stressed fish, due to 

catecholamine-induced epithelial lifting and dysfunction of the gills (Wendelaar 

Bonga, 1997). 

The chloride cells harbor the majority of the in Na+/K+-ATPase activity 

in the gills. In response to the pain and stress treatment, increased migration of 

the cells from the filaments towards the lamella was observed. This 

phenomenon occurred in the 6 and 24 h post-treatment groups, whereas at 1 h 

post treatment, migration was not yet visible. The time kinetics of this response 

makes it a parameter of choice in many settings, a notion that needs and 

deserves further attention in our welfare research. 

We did not assay catecholamine levels, so we can only assume that the 

fin clip evoked an adrenergic response that may increase the branchial 

permeability to water and ions (Wendelaar Bonga, 1997). The rather constant 

plasma ion levels do not support this prediction. A rapid transient rise in 
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Na+/K+-ATPase activity as observed in the most severely stressed fish (those 

receiving the fin clip) could contribute to counteract an imminent loss of ions. 

The increase in activity and the migration of the chloride cells are a 

combined adaptive osmoregulatory response to the fin clip and the likely 

endocrine changes occurring in the fish. The migration of chloride cells is 

secondary to that in time and suggests an alternative adaptive strategy. The 

phenomenon of migrating chloride cells from the filaments to the lamellae is a 

well described adaptation strategy of euryhaline fish in the transition of salt to 

brackish water (Hirai et al, 1999). In our fish it seems unlikely though that new 

cells contribute significantly to the migration, rather a redistribution of cells 

seems to occur. More research is needed to investigate the combined response 

of the activity of the enzyme and the migration of the chloride cells in response 

to a fin clip. 

The group clipped 1 h previously an increased mucous secretion was 

observed compared to the controls. In the group clipped 6 h previously, the 

cells had recovered and were re-filled with mucus, suggesting the observed 

effect is an acute reaction to the fin clip to increase the protective mucus layer 

on the gills. The accompanying stress response had no effect on the mucus cells 

in the gills. 

 Mucus is produced in the goblet cells produce mucine granules. When 

these cells come into contact with the water they burst at the cell surface and 

subsequently the mucus is released (Verdugo, 1991). Mucus has a very high 

water content captured by glycosaminoglycans and glycoproteins (Fletcher et 

al, 1976). In addition, mucus contains substances, such as lysozyme, IgM's, 

calmodulin and pheromones (reviewed in Shephard, 1994). Mucus serves an 

array of functions in fish (and all other animals). On the gills, it forms an extra 

unstirred layer and influences ion and water movements and gas exchange and 

imposes an immune barrier for pathogens. Further mucus provides protection 

against chemical and physical disturbances (Shephard, 1994). 

The multidisciplinary gills and the protective function of mucus 

highlights the importance of further studies into the differential responses of 

the mucus cells in the gill filaments to the fin clip and the stress response. 

Several aspects of mucus biology in relation to the pain response can be 

studied. Finding the trigger for the differential mucus release seems an 

intriguing task, analyzing the composition of mucus and the possibility of 

different types of mucus with subsequent different release triggers and 

receptors can be investigated. The excretion profile of mucus after a shorter 

time period then 1 h after a fin clip and the mucus on the tail section that 

received the fin clip deserve attention. 
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5. General conclusions 

This experiment aimed to confirm involvement of pre-selected 

parameters in the response to a presumed pain stimulus in the form of a fin clip 

and to select key parameters for future studies into this field of research. In 

addition, the study aimed to confirm differential responses to the fin clip 

compared to the accompanied stress response. A wealth of new insights was 

obtained with great promise for the near future of our welfare research in 

fishes. 

The response that was found for several parameters and the presence 

of the nerve bundles show that the fin clip stimulus was rightly predicted to be 

painful. The differential response to the fin clip and the handling stress shows 

that the fish experience different degrees of discomfort. 

Several promising parameters have now been tested and selected for 

future research. However, pain may also be studied in future experiments by 

measuring substance-P, endorphins, EEG-measurements or some combination 

thereof. 

The results confirm a differential response of the fish to the fin clip and 

the stress treatment for the behavioral response, enzymic osmoregulatory 

activity and the mucus cell response and these will be the focus for future 

experiments. 
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Abstract 

Consumer awareness of the need to improve fish welfare is increasing. 

Electrostunning is a clean and potentially efficient procedure more and more 

used to provoke loss of consciousness prior to killing or slaughtering (reviewed 

by van de Vis et al, 2003). Little is known how (powerful) electrical stimuli, 

which do not stun immediately, are perceived by fish.  

We investigated responses of hand-held Mozambique tilapia 

(Oreochromis mossambicus) to a standardized electric shock applied to the 

tailfin. The handling with the resulting unavoidable acute stress response was 

carefully controlled for. Fish responses were analyzed up to 24 h following the 

shock. Electric shock resulted in slightly higher levels in plasma cortisol, lactate, 

ionic levels, and osmolality, than handling alone. Plasma glucose had 

significantly increased 6 h after shock compared to handling, indicative of 

enhanced adrenergic activity. Mucus release from the gills, branchial Na+/K+ 

ATPase activity, and chloride cell migration and proliferation, parameters that 

will change with strong adrenergic activation, were not affected.  

Decreased swimming activity and delay in resumption of chafing 

behavior indicated a stronger and differential response towards the electric 

shock. Responses to handling lasted shorter compared to those to an electric 

shock. The differential and stronger responses to the electric shock suggest that 

fish perceived the shock potentially as painful. 
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1. Introduction 

 The international association for the study of pain (IASP) defines pain 

as an unpleasant sensory and emotional experience associated with actual or 

potential tissue damage, or described in terms of such damage (IASP, 1979). 

The questions of pain, pain awareness, fear and stress in fish are still subject of 

controversies. In humans, these processes depend on functions controlled and 

executed by the highly developed hippocampus, amygdala, and cerebral frontal 

lobes of the neocortex (Apkarian et al, 2005). The absence of 

identical/comparable structures in teleostean fish has led some researchers to 

conclude that fish cannot experience pain, fear or stress (Bermond 1997; Rose, 

2002). Recently, homologies between the telencephalic medial pallium of the 

teleosts and the amygdala of mammals as well as between the teleostean lateral 

pallium and the mammalian hippocampus have been identified (Portavella et al, 

2002). This suggests that parts of the fish telencephalon could function to 

interpret processes related to pain, pain awareness and fear, as do their 

homologues in mammals. Differences in development and organization of fish 

brain, in particular the eversion of the telencephalon vs. inversion in mammals, 

has contributed significantly to a late recognition of a neural substrate for fish 

cognitive abilities, and assigning consciousness to fish which is at the basis of 

pain and fear experiences in mammals.  

Reviews by Braithwaite and Huntingford (2004) and Chandroo and 

coworkers (2004) present evidence that fish, despite their less developed 

telencephalon, have learning abilities at a level that implies cognitive abilities. 

For selected species (rainbow trout, Oncorhynchus mykiss; Atlantic cod, Gadus 

morhua; goldfish, Carassius auratus; Atlantic salmon, Salmo salar) evidence has 

been advanced that fish do have the capacity to perceive painful stimuli and the 

adequate nociceptive fibers for the detection of potentially painful stimuli 

(Sneddon, 2002; Nilsson et al, 2002; Nordgreen, 2009); we have recently shown 

that tailfin clipping may be a painful experience in Nile tilapia, Oreochromis 

niloticus and common carp, Cyprinus carpio (Roques et al, 2010). However, it 

should be emphasized that it is unlikely that fish, as well as animals in general, 

except maybe higher primates, have the capacity to experience suffering as 

humans do (Braithwaite and Huntingford, 2004). Nociception, the detection of 

potentially harmful stimuli, is at the very basis of experiencing pain, i.e. 

interpreting a nociceptive stimulus. Two types of nerve fibers are involved in 

the process of nociception: the myelinated A-fibers are involved in the 

transmission of well-localized acute pain, while unmyelinated C-fibers (simply 

isolated by glia) are involved in poorly-localized unpleasant slow dull pain 

(Sneddon, 2002; Pottinger et al, 1997; Lynn, 1994). Sneddon (2002) identified 

these two types of fibers in the head the rainbow trout. More recently, Roques 
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and coworkers identified these fibers in the tail of common carp, where the 

stimulus of the current study was given (Roques et al, 2010).  

A pain experience by definition involves both the nociceptive sensory 

machinery and the actual translation of harmful stimuli into a feeling of pain. 

Fish should possess then both a nociceptive system and cognitive capacities to 

experience pain in analogy to humans. Indeed, a limited, yet firm, literature 

supports that fish do detect harmful stimuli, respond to nociceptive stimuli but 

also may conceptualize pain (Braithwaite and Huntingford, 2004; Chandroo et 

al, 2004; Sneddon, 2002; Sneddon, 2003; Sneddon et al, 2003a; 2003b; Roques 

et al, 2010). Nilsson and coworkers (2002) demonstrated explicit memory in 

Atlantic cod. Other examples of learning abilities include individual positioning 

in a social network, prey-predator relationship, avoidance of dangerous sites 

associated with negative experience and decision-making based on outcomes of 

fights with conspecifics (Reviewed by Galhardo and Oliveira, 2009). Therefore, 

it is reasonable to hypothesize that fish have a neural substrate for some form 

of consciousness and may also experience pain. As fish learn to avoid painful 

conditions there must be a memory for such adverse events.  

The aim of the present study was to assess the behavioral, physiological 

and endocrine responses of Mozambique tilapia (Oreochromis mossambicus) to 

a presumed and standardized pain stimulus (electrical shock applied to the 

tail).  

Swimming activity (number of crossings from dark to light sections of 

an aquarium) was monitored under the hypothesis that a stressor alters 

light/dark preference (Maximino et al, 2010). The delay of resuming the 

stereotypical chafing behavior was monitored following an electrical shock 

given to the tail fin; the handling associated with the shock treatment was 

controlled for. When chafing, fish shoot downwards to the bottom, lay 

themselves on their flank, and chafe over the substrate, for up to 10 times 

before rising again and resuming their previous position (Galhardo et al, 2008). 

Stress-related plasma parameters together with parameters for 

osmoregulatory performance and branchial release of mucus were analyzed. 

This study was designed to discriminate the response to the application of an 

electric shock to the tailfin (a presumed painful stimulus), from handling stress.  

Stress is a well-known confounder in pain research as the application 

of painful stimuli often goes with handling and induces a stress response that 

may obscure the response proper to, in this case, the electric shock. It may be 

difficult to distinguish between a stress response and a mild pain response as 

these responses are part of the fish’s stress physiology. Therefore, we included 

for every group that received the electric shock a control for handling stress.  
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2. Materials and Methods 

2.1 Fish  

Mozambique tilapia (Oreochromis mossambicus), weighing around 120 

g, were obtained from laboratory stock. Two weeks before the start of the 

experiment, fish were randomly divided into 7 groups, housed in 140-L aquaria 

with 10 fish each; the fish received pellet feed at 2% of the total body weight 

daily (Trouvit, Trouw, The Netherlands). The water quality was monitored for 

nitrogenous waste products daily (NO2
-
 < 0.5 mg/L; NO3

- < 12.5 mg/L; NH4
+

 < 

0.5 mg/L; O2 > 7.0 mg/L). Water pH (range: 7.3 - 7.7) and water temperature 

(25 ± 0.2°C) were continuously monitored; the light regime was 12h light: 12h 

dark. The study was approved by the Animal Experimental Committee at 

Lelystad, the Netherlands (Protocol: 2009143.c). 

2.2 Electrical shock 

Individual fish were caught by net and restrained in a V-shaped box 

covered with a wet towel to immobilize it. The electrodes were placed at a 

caudoventral corner of the tailfin (Fig. 1). Chervova (1997) concluded that 

caudal fins are among the most sensitive zones for damage, due to aggressive 

behavior, in White Sea cod (Gadus morhua marisalbi) and steelhead salmon 

(Salmo mykiss). Fin damage is frequently observed in the wild as well as in 

aquaculture practices, with sorting and transport activities as major causes. 

Furthermore, A-δ and C-fibers, involved in nociception were demonstrated in 

this fin area of common carp, Cyprinus carpio (Roques et al, 2010). Electricity 

(15 Volts dc, 64 ± 34 mA) was applied for 1 sec to the tailfin, and subsequently 

the fish were immediately returned to their tank. Control for handling stress 

fish were handled the same way except that the electric shock was omitted 

(only the gentle pressure of the electrode application to the fin was given). 

Seven groups of 10 fish were used (Table 1), including 1 (untreated) 

control group that was sampled for plasma analyses the day before the six 

experimental groups. Fish receiving an electric shock and controls were 

sacrificed 1, 6 and 24 h after the shock or handling stress was given. Fish were 

not fed as of 24 h before sampling.  
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Fig. 1. Scheme of the electrical system used to provide the standardized electroshock. (1) V-shaped 
box covered with a wet towel to avoid desiccation. Fish were gently and manually restrained, (2) 
anode, (3) cathode, (4) pliers, (5) spring, adjusted to ensure standard stimulus, (6) stimulator with 
digital indication of the current delivered, (7) electronic integrator with fixed value of voltage 
delivered (15 V per pulse). 

2.3 Sampling 

The fish were quickly (within 20 sec) netted and deeply anaesthetized 

with 2-phenoxyethanol (0.1% v/v in water; Sigma-Aldrich, St Louis, USA); the 

fish lost equilibrium within 30 sec and got deeply anaesthetized within 2 min. 

Blood samples obtained by puncture of the caudal vessels with a heparinized 

syringe fitted with a 25 Gauge needle were immediately centrifuged at 4°C and 

10,000 g for 10 min to separate plasma and cells; plasma was snap-frozen and 

stored at -20°C.  

Two gill arches were excised and stored in SEI buffer (150 mM sucrose, 

10 mM EDTA, 50 mM imidazole; pH:7.4) for later determination of Na+/K+-

ATPase enzymic activity or fixed in Bouin’s (15 volumes saturated picric acid : 5 

volumes formaldehyde : 1 volume glacial acetic acid) for mucus cell and 

chloride cell (immuno-)histochemistry.  

2.4 Behavior 

Tanks were covered with black non-transparent plastic to make 50% of 

the volume of the tank dark and 50% illuminated. Behavior was recorded with 

a Samsung SHR-2040 4-Channel DVR Security System recorder linked with 

Sanyo’s bullet video cameras. Activity was monitored continuously from 1 h 

prior stimulus to 6 h post stimulus, for 1.5 h prior the lights were switched off 

(9 to 10.5 h post stimulus) and for 1 h on the next morning (23 h post-

stimulus). The number of moves from one compartment to the other was 

registered. Transition from one to the other compartment was scored when the 

whole head of the animal crossed the border between the two compartments. 

Controls were analyzed similarly over a period of 5 days prior the stimulus 

application. Results are presented as averages of four periods of 15 min per h. 
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We further investigated the delay to resume chafing behavior which is 

prominent in tilapia. This may occur as a single act or in bouts of 10 or more 

within only a few seconds (Wyman and Walters-Wyman, 1985).  

2.5 Blood plasma 

 Plasma was analyzed for cortisol as described in detail before (Metz et 

al, 2005). Plasma glucose and lactate were measured with commercially 

available enzymatic test kits (Instruchemie, Delfzijl, The Netherlands), with 

protocols adapted to a 96-well microtiter plate. For glucose, 10 μL sample or 

standard (5.55 mM glucose) was mixed with 200 μL reagent and incubated for 

10 min at 25°C. Absorbance was read within 60 min at 495 nm. For lactate, 10 

μL sample or standard (4.44 mM lactate) or blank (8% perchloric acid) was 

mixed with 290 μL of lactate reagent and incubated for 20 min at 37 °C. 

Absorbance was read at 355 nm. Plasma osmolality (sample volumes: 50 μL) 

was measured with a cryoscopic osmometer (Osmomat 030, Gonotec, 

Germany). Deionized water (0 mOsmol/kg) and a standard solution (300 

mOsmol/kg) were used as reference. 

2.6 Gill histology 

Gill samples fixed in Bouin’s were dehydrated in a series of alcohols 

and embedded in paraffin. The samples were cut at 7 µm and sections stained 

for the presence of mucus cells and chloride cells. Mucus was stained with 

Alcian blue. The mucus cell density was estimated by counting Alcian blue 

positive cells in designated representative cross-sections stretching along 300 

lamellae of the sampled gill arch (leading edge). Following noxious stimuli, 

mucus cells may expel their content resulting in a decreased frequency of Alcian 

blue positive cells. Mucus cell frequency was assessed for each fish twice by the 

same person. Mucus cells are found in this species on both the leading and 

trailing edge of the gill filament and were scored on both locations to avoid 

topological bias. Statistical analysis indicated that mucus cells are evenly 

distributed over the gill filament in this species (P < 0.05; data not shown). Data 

from cell frequencies in the leading edge of the gill filaments are presented. 

The chloride cells in the gills were detected through staining of their 

abundant Na+/K+-ATPase by immunohistochemistry with a monoclonal 

antibody raised against chicken Na+/K+-ATPase alpha-subunit (IgGα5, a 

generous gift of Dr. D. Farmbrough, Developmental Studies Hybridoma Bank, 

Department of Biological Sciences University of Iowa, USA). The Na+/K+-ATPase 

α-5 antibody has been used in a number of studies to localize Na+/K+-ATPase in 

fish gills including in tilapia species (Dang et al, 2000; Metz et al, 2003). In 

tilapia, chloride cells predominate on the trailing edge of the filament (where 
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the water flow exits the gill) and in the adjacent interlamellar space of the 

filamental epithelium (Van der Heijden et al, 1997). Sections of the trailing edge 

were scored for chloride cell incidence. Under stressful conditions chloride cells 

may migrate from filamental to lamellar epithelium (Roques et al, 2010; Schram 

et al, 2010); we scored our samples for this migration. Enzymic activity of 

Na+/K+-ATPase activity as a measure of sodium pump capacity of the gills was 

determined by measuring the K+-dependent and ouabain-sensitive ATP-

hydrolytic activity in a gill homogenate (Metz et al, 2003). As the bulk of the 

Na+/K+-ATPase is restricted to the chloride cells of the gills, a homogenate 

results in proper reflection of the sodium pump capacity of the chloride cell 

compartment. 

2.7 Statistics 

 Physiological data are expressed as means plus or minus standard 

deviation (SD) (Table 1). When data were normally distributed (Kolgomorov-

Smirnov test) and equality of variances verified (Levene’s test), differences 

between groups were analyzed using one-way ANOVA followed by Bonferroni’s 

post-hoc test. When the conditions of validity were not met, the non-parametric 

Kruskal-Wallis ANOVA followed by the multiple comparison Wilcoxon rank-

sum test was used to assess statistical significance of differences. Even mucus 

distribution over the gill filament was tests with a t-test for paired samples. 

Statistical differences for behavior data were assessed by the non-parametric 

Mann-Whitney U-test. 

3. Results 

3.1 Swimming activity  

In control situations, the fish were very active in the early morning 

(7:00 until 11:00). Then activity declined gradually from 11:00 until the middle 

of the afternoon (16:00). There is an apparent revival in activity in the last 1.5 h 

prior to lights off (i.e. from 18:00-19:30). For both the handled-only group and 

the shocked group a significant decrease in activity during the first 2 h post-

stimulus. Three hours post-stimulus the activity is still significantly lower for 

the group that received the electrical stimulus. Recovery seems to occur after 4 

h in this group, while it is achieved after 3 h for the handling-only group (Fig. 2A 

and 2B). 

 

 



49 

 

 

 

 

 

 

 

Fig 2. Quantification of the general swimming (crossing) activity in Mozambique tilapia following 
several treatments; 2A: electric shock vs. its control; 2B: handling stress vs. its control situation; 
analysis for a period of 24 h. Data are presented in number of crossing events per fish and per min 
per periods of 1 h, (10 fish per tank). Controls were analyzed similarly over a period of 5 days prior 
to the stimulus application. Results are presented as averages of four periods of 15 min per h, and 
S.E.M. Tanks are divided into two distinct zones (covered vs. uncovered). Fish were considered to 
cross when their entire head was in the other compartment. 

3.2 Chafing behavior  

In controls chafing was seen for all fish from 8:00 until 13:00, 

regardless of the sex or social status of the individuals. From 13:00 to 16:00 the 

incidence of this behavior declined, and it was mainly performed by dominant 

individuals. Performance incidence of this behavior gradual increased from 

16:00 until lights were off (19:30). Both shocked and handled groups totally 

stopped displaying chafing behavior after the stimulus or the handling. The 

delay to resume chafing was 1h 55 min for the handled-only group, and 2h 10 

min (15 min later) for the group receiving the electroshock. 

3.3 Stress and plasma analyses  

Data on plasma concentrations of cortisol (H (6, N=68) = 39.92, P < 

0.01) and glucose (H (6, N=68) = 37.80, P < 0.01) (Table 1) showed the 

predicted changes resulting from stress. No significant differences between a 

shock and handling-only stress at 1 h after manipulation were observed. After 6 

h, cortisol and glucose levels of the shocked group remained elevated compared 

to controls; only for glucose there was a significant difference between shocked 

and handled-only fish. Lactate levels (H (6, N=61) = 25.02, P < 0.01) remained 

constant in both groups 1 h after treatment before decreasing, significantly for 

the shocked group, at 6 h. Levels in both groups are back to control after 24 h.  
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Table 1. Plasma parameters, branchial Na+/K+-ATPase activity of Mozambique tilapia. Data are 
expressed as mean and standard deviations (SD). Different letters indicate significant differences at 
P = 0.05 (Post-hoc multiple comparisons after Kruskal-Wallis, when the data were not normally 
distributed, one-way ANOVA followed by Bonferroni post-hoc test when the data were normally 
distributed). 
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3.4 Ionoregulation related parameters 

 The plasma levels of Na+ and Cl- are shown in table 1. No significant 

differences in both plasma ionic concentrations were found (Na+: H (6, N=45) = 

13.65, P = 0.034 ; Cl-, P = 0.91). No differences in Na+/K+-ATPase activity were 

found among the groups tested (H (6, N=58) = 15.51, P = 0.017). Plasma 

osmolality (H (6, N=68) = 35.80, P < 0.01) significantly decreased from 1 h post 

stimulus in the shocked group, recovery was not observed after 24 h. In the 

handled group, a significant decrease was observed only after 6 h, and full 

recovery was seen after 24 h. 

3.5 Mucus cells and chloride cells migration 

Mucus cells in the control group are observed between the lamella in 

the filamental epithelium, in the same region where chloride cells are found 

(Roques et al, 2010). In all the groups, regardless of the treatment and time 

point, no difference in mucus cell frequency was found compared to the 

controls. No migration of the chloride cells was observed during the 

experiment. 

4. Discussion 

4.1 Swimming activity 

The fish that received the electric shock significantly decreased their 

general swimming activity for at least 3 h. Fish only handled showed decreased 

activity (compared to controls) for 2 h; fish that received an electroshock 

showed decreased activity for up to 4 h, when compared to their controls. This 

difference between the two treatments indicates that the combination of 

handling and the electric shock has a stronger effect than the handling 

procedure alone. The response differed from that observed in Nile tilapia, 

Oreochromis niloticus, subjected to fin clip. In the latter study the activity was 

enhanced after the fin clip for at least 6 h (Roques et al, 2010). This may be 

related to the different type of stimuli used. For the fin clip, the harmful 

stimulus was accompanied by tissue damage. The clip was speculated to result 

in a strong adrenergic response, that will affect both behavior and branchial 

mucus cell release shortly following the stimulus in Nile tilapia (Roques et al, 

2010).  

The caudal fin is an easy target and therefore often subjected to attacks, 

both in the wild and in husbandry conditions, resulting in conditions 

comparable to the fin clip procedure. In such case, the animal may have the 

tendency to flee from the place it was hurt (Wendelaar Bonga, 1997). This 
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would explain the enhanced activity after receiving the clip, a stimulus with 

physical damage. The electric shock is a novel experience for the fish and did 

not provoke physical damage under the conditions applied. The apparent 

quietness in the first hours following the electroshock in Mozambique tilapia, 

Oreochromis mossambicus, likely reflects the different nature of the stimulus 

compared to the fin clip, but may also be a species-specific response. The faster 

recovery in the handled group compared to the shocked group is an indicator 

that the stimulus was perceived as noxious, potentially painful. Nevertheless, 

the recovery seems faster in the current study (compared with the fin clip), 

suggesting that the electrical stimulus was potentially perceived as less noxious 

than the fin clip.  

4.2 Chafing behavior  

Mozambique tilapia that were subjected to either an electric stimulus 

or only handling completely stopped to display chafing behavior for almost up 

to 2 h. Fish that received the electric shock seemed to recover slower (by 15 

min) than the handled-only group.  

 Chafing has been widely observed among numerous families of teleost 

fish, including Cichlidae and Mozambique tilapia (Oppenheimer and Barlow, 

1968; Barlow and Green, 1970; Wyman and Walters-Wyman, 1985). It is 

considered as a maintenance behavior, with the primary goal to remove 

parasites or particles from the body surface of the fish (Galhardo et al, 2008; 

Wyman and Walters-Wyman, 1985). In case of fish raised in captivity, with poor 

environmental conditions it was speculated that chafing may reflect a 

redirected behavior when the natural environment is unavailable, or in 

response to an adverse context (Galhardo et al, 2008; Wyman and Walters-

Wyman, 1985).  

Galhardo and colleagues (2008) observed that chafing is more 

important in Mozambique tilapia when substrate is not provided in comparison 

which substrate-enriched tanks. Furthermore, she speculated that this behavior 

might serve as a coping mechanism, revealing conflict, frustration or 

disturbance due to the presence in an unfavorable environment. In the present 

study, we can stipulate that fish in the control condition can be considered in a 

state of frustration as she described above, due to the relatively poor 

enrichment of the environment (standard laboratory conditions: glass aquaria, 

half covered, without substrate). When the electric shock is applied to the fish, 

they may be emotionally affected and therefore stop to display such type of 

stereotypical behavior as a result of a disturbance. Individuals receiving the 

noxious stimulus (electric shock) can be seen as more affected in comparison 

with the handled-only fish, since they start to display this behavior later. The 
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performance of such behavior may apparently be overruled by a noxious, 

potentially painful stimulus.  

 The changes in both chafing and general swimming (crossing) activity 

indicate that there is a differential response between the shocked group and the 

handled-only group, the latter one recovering faster. These behavioral pattern 

changes are clear indications that the electric shock is perceived as potentially 

painful. This underlines the importance to monitor behavioral parameters in 

welfare and pain-related studies in teleosts (Sneddon, 2003; Sneddon et al, 

2003; Roques et al, 2010).  

4.3 Stress and plasma analyses  

The plasma cortisol level increased in response to handling only and 

the electric shock, but did not differ between the 2 conditions. Basal plasma 

cortisol levels in our fish were in the range considered normal for non-stressed 

fish, i.e. 33.9 (29.5) nM (Wendelaar Bonga, 1997). The handling and shocked 

groups increased significantly cortisol levels 1 h post treatment both for the 

electric-shock and handling controls. and remained significantly elevated at 6 h 

post treatment compared to the control. Increases up to 165.6 nM (60 ng/mL) 

are generally referred to as a mild response, while rapid increases above 276 

nM (100 ng/mL) are generally considered to reflect a severe stress response 

(Wendelaar Bonga, 1997). When fish experience chronic stress, plasma cortisol 

level should remain elevated compared to controls (Wendelaar Bonga, 1997), 

but in our fish cortisol levels returned to control values by 24 h, which indicates 

that the fish recovered from the procedures. In the same species as used here, 2 

h of net confinement were reported to induce cortisol to rise from 5-8 nM to 

440 nM (Nolan et al, 1999).  

Plasma cortisol in Nile tilapia receiving tailfin clip or submitted to 

handling stress only rose significantly after 6 h (334.6 nM (292.2) and 256.4 nM 

(139.9), respectively) (Roques et al, 2010). No differences were observed 

between the 2 treatments, as in current study. Such results indicate that the 

electroshock given to the fin represented a relatively mild stress when 

evaluated by cortisol response in comparison with other stimuli. This plasma 

parameter showed a different pattern in comparison with the fin clip study, 

stressing once more the difference between the 2 types of stimulus, targeting 

the same body part. Furthermore, as no differences were observed between the 

shocked groups and their related handling stress groups, plasma cortisol seems 

not suitable to assess the actual effect of such mild noxious stimulus in term of 

potential pain indicator. 

Plasma glucose and lactate levels followed the changes observed in 

cortisol levels, with significant increased glucose levels compared to the 
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controls after 1 h for both groups. Plasma glucose of the shocked group remain 

significantly higher compared to the control and handled groups at 6 h. Lactate 

levels had slightly decreased after 6 h, and no difference between the two 

groups was observed. It appears that both treatments affect the fish; cortisol 

has a stimulatory effect on glycaemia that lasted longer in the case of the 

electric shock. This long-lasting effect was not observed for the fin clip (Roques 

et al, 2010). For this parameter, an electroshock seems to have a stronger effect. 

This could be due to the nature of the stimulus, the clip inducing acute strong 

adrenergic response due to the tissue damage, while the electroshocks induce a 

longer lasting endocrine and behavioral response, probably due to its unusual 

(unpredictable and novel) nature. A decrease in plasma lactate can be 

interpreted as use of lactate as metabolic substrate for gluconeogenesis to cope 

with the adverse situation. The endocrine mediators involved in this process 

have not been investigated in this study. Polakof and Soengas (2008) 

demonstrated in rainbow trout injected either intraperitoneally (IP) or 

intracerebroventricularly (ICV) with l-(+)-lactate that lactate metabolism was 

apparently involved in glucose homeostasis through changes in plasma glucose 

levels and glucose production in liver. They suggested that lactate was probably 

being converted into glucose by the liver, resulting in higher plasma levels of 

glucose, and, as a result, an increase of glucose availability. 

Plasma concentrations of Na+ and Cl-, the two main determining 

components of plasma osmolality, did not significantly change after the shock 

and handling. There was a tendency for the level of these two ions 

(independently) to decrease after both treatments over the time. Indeed, 

plasma osmolality (determined mostly by the levels of these two ions) did 

decrease significantly for both groups, with an apparent stronger effect for the 

shocked group. These observations support the relative mildness of the stimuli 

applied and indicate a mild loss of control over permeability to water and ions, 

as is often seen in stressed fish, due to catecholamine-induced epithelial lifting 

and dysfunction of the gills (Wendelaar Bonga, 1997). This mild loss of ions is 

counteracted at the level of the gills by a slight increase in Na+/K+-ATPase 

activity, observed for both stimuli, after 6 h.  

Unlike in a previous experiment (Roques et al, 2010) where an 

increased mucus secretion was observed 1 h post stimulus, mucus secretion 

was not enhanced in the present experiment. This is additional evidence for a 

differential response of the fish towards two different stimuli: the fin clip 

induced a stronger acute adrenergic response associated with the tissue 

damage than the response to an electric shock. 
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5. General conclusions 

A fin clip and an electric shock elicit differential responses, qualitatively 

and quantitatively.  

While the fin clip elicited a strong acute adrenergic response, especially 

at the level of the gills (mucus secretion, chloride cells migration), accompanied 

by an enhanced swimming activity and a preference for the dark compartment, 

this was not observed in the current study. The stereotypical chafing behavior 

provides a reliable marker for discomfort. Physiological parameters were 

mildly affected mainly from 6 h post stimulus (glucose, lactate, osmolality), with 

only glucose levels significantly different compared to handled controls.  

Behavior showed an opposite pattern, the animals being less active 

following the stimulus, with a slower recovery in shocked fish compared to 

handled-only fish. We ascribe these differences to the different nature of the 

stimuli; the tissue-damaging fin clip induces a strong and acute adrenergic 

response of short duration, the electric shock, a novel stimulus, elicited a 

longer-lasting reaction.  

Our results show that exposure of Mozambique tilapia to a mild electric 

shock impairs its welfare. This is relevant as the European Food Safety 

Authority (EFSA) recognizes that farmed fish at slaughter run the risk to be 

exposed to currents too low to provoke immediate loss of consciousness. Our 

study supports the EFSA recommendations on electronstunning conditions for 

fish.  
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Abstract 

 

 The habituation response of long-fin zebrafish (Danio rerio) receiving a 

standardized noxious and potentially painful stimulus (tailfin clip) was studied 

over a period of 8 days following the fin clip in the novel tank paradigm. The 

control group was transferred daily for 6 min to the novel tank, and showed 

signs of habituation to the procedure from the 5th day. Two experimental 

groups were transferred similarly and received in addition the tailfin clip either 

on day 1 (FC D1) or 5 (FC D5), respectively. Traditional parameters affected by 

anxiety, viz. time spent in the upper zone of the tank, zone transition frequency, 

‘freezing’ behavior were not affected by this clipping procedure. Total distance 

swum was significantly lower on day 5 in the group receiving the stimulus on 

that day, while no differences were found when the clip was given on day 1. 

Freezing was seen occasionally in all groups on day 1, only three individuals 

from the FC D5 group showed this behavior on day 5. We conclude that tailfin 

clip does not affect habituation to novelty when applied on day 1, but when the 

fin clip is applied on day 5, no competing emotions exist; pain-related behavior 

is expressed, independently from novelty.  
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1. Introduction 
 

 The questions of pain, pain awareness, fear and stress in fish are 

subject of controversy; the brain structures that control these emotional 

processes in mammals, the hippocampus, amygdala, and cerebral frontal cortex 

as such are absent in teleostean fish. This has led some researchers to conclude 

that fish cannot experience pain, fear or stress (Bermond, 1997; Rose, 2002, 

2007). More recently, the medial and lateral pallium in the teleostean 

telencephalon were established to be functionally similar to mammalian 

amygdala and hippocampus, respectively (Portavella et al, 2002). The lateral 

pallium is linked with processing both spatial memory and temporal 

relationships whereas the medial pallium is associated with fear-related and 

aversive responses. Some authors refer to this structure as a place that 

specifically processes ‘emotional memory’ (Broglio et al, 2005). 

  Evidence of learning that implies cognitive abilities have been reported 

for several fish species (Braithwaite and Huntingford, 2004; Chandroo et al, 

2004). Fish learn to avoid painful conditions and thus there must be a memory 

for such adverse events. Therefore, it is reasonable to hypothesize that fish 

have some form of consciousness that can include the capability to experience a 

form of pain (Braithwaite and Huntingford, 2004).  

 The aim of the present study was to assess the behavioral responses of 

zebrafish (Danio rerio) to a presumed painful stimulus, a standardized tailfin 

clip. We used the commercially available mutant 'Tupfel long-fin' zebrafish, 

which has longer fins than wild type zebrafish, but no other phenotypic 

differences (Géraudie et al, 1995). In a previous experiment, we identified in 

the tailfin of common carp (Cyprinus carpio) A-δ and C-fibres, that are involved 

in nociception in mammals (Roques et al, 2010). In this same study, Nile tilapia 

(Oreochromis niloticus) responded to a tailfin clip by an increased swimming 

activity (Roques et al, 2010). Here we propose to study behavior of zebrafish 

receiving this stimulus in a novelty test. 

 Several behavioral tests were recently adapted from mammalian 

models (rodents) and validated for zebrafish (Champagne et al, 2010). Changes 

in place preference, exploratory, risk-taking and abnormal behavior after a 

noxious and potentially painful stimulus are reliable parameters to monitor 

responses to potential pain stimuli.  

 In this study, we used hitherto naïve zebrafish in a novel tank paradigm 

(Cachat et al, 2010; Wong et al, 2010), and investigated habituation to a novel 

environment, and the effect of a fin clip thereupon. Habituation is the most 

basic form of learning (Bolivar, 2009). Habituation is important in filtering the 

most important information received from the environment; once habituated to 
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a novel situation, the animal can focus on other more important features, such 

as exploration. If habituation is impaired, the animal may not be able to 

distinguish neutral stimuli from immediate threat, which can result in 

overstimulation of the stress axis and impaired welfare. Wong and colleagues 

(2010) demonstrated habituation of zebrafish to a novel environment through 

quantification of fearful behaviors (erratic movements, freezing) and 

enhancement of exploratory behavior. The initial response to novelty of 

zebrafish would be diving to the bottom of the tank, freezing and erratic 

movements and low exploration, characterized by few moves to the upper part 

of the novel tank. In normal conditions, those features would be less frequent as 

time passes and the fish would gradually and increasingly explore the novel 

environment, typically by augmenting the number of entries and time spent in 

the upper zone (Levin et al, 2007). 

 We monitored both swimming activity and spatial preference over a 

period of 8 days, under the hypothesis that stress/anxiety (fin clip) alters 

habituation (Wong et al 2010). We designed the experiment procedure to 

discriminate between the response to a tailfin clip (a presumed painful 

stimulus) and the unavoidable handling stress that goes with the clip. Stress is a 

well-known confounder in pain research.  

 Two groups received the fin clip at distinct time points; one at the 

beginning of the experiment (day 1; group FC D1) and the other at day 5 (FC 

D5), when habituation to novelty should have become manifest (Wong et al, 

2010). We chose to apply the fin clip on those two time points on the 

expectation that the behavior observed on the first day would be the result of a 

motivational conflict between the reactions to novelty and to the fin clip. On the 

5th day, the fish are expected to be habituated to the novel tank, and therefore 

the behavior observed should be caused by the clip itself. 

 

2. Material and methods 

2.1 Fish 

 

 Adult zebrafish, weighing 0.32 (± 0.04) g, from the local breeding stock 

of the laboratory aquarium facilities of the Radboud University Nijmegen were 

used for this experiment. Fish received flakes feed at 2% of the total body 

weight daily. The water quality was monitored weekly for nitrogenous waste 

products (NO2
-, NO3

- and NH4
+). Water pH and temperature were continuously 

monitored; oxygen was provided to saturation; the light regime was 12 h light : 

12 h dark. The study was approved by the Animal Experimental Committee of 

Nijmegen (Protocol: 2012-043). 
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2.2 Experimental setup 

 

 Prior to the experiment, fish (8 per group divided in 2 aquaria of 4 fish 

each) were transferred to a climate room. The fish were placed into 2-L acrylic 

transparent aquaria and acclimatized to the new system for 4 days. One fish 

died during this acclimatization period (control group tank; reason not known) 

and was not replaced. 

 

2.3 Novel tank exposition 

 

 Behavioral testing was performed using the novel tank test, 

representing a 1.5-L trapezoidal tank (15.2cm height×7.1cm width×27.9cm 

top×22.5cm bottom length, as described by Wong et al, 2010. Fig. 1). During the 

8 days of experiment, fish were daily transferred from their home tanks to the 

novel tank setup where behavior was recorded for a period of 6 min using a 

Samsung DVR coupled with Sanyo bullet video-cameras. After those 6 min of 

exposure, fish were returned to their home tank. Fish from the control group 

were individually caught, restrained in the net for 15 sec and transferred 

without further manipulation to the novel tank (Fig. 2A and 2C). Experimental 

fish were individually caught, restrained in the net and received either on day 1 

(FC D1) or on day 5 (FC D5) a fin clip, prior to being transferred to the novel 

tank (see the section below and Fig 2B.). the whole fin clip procedure lasted 15 

sec per animal. Those fish were caught, restrained in the net for 15 sec and 

transferred without further manipulation the other days to the novel tank (Fig. 

2A and 2C).  

Fig. 1. Tank used to test for habituation to novelty. A 1.5-L trapezoidal tank (15.2cm height×7.1cm 
width×27.9cm top×22.5cm bottom length filled up to 3 centimeters below the top of the tank with 
water from the fish holding system.  
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 The novel tank was filled with the same water from the fish setup, and 

thoroughly rinsed with demi-water between each fish trial. Novel tanks rested 

on a level, stable surface and were surrounded by white, non-reflecting walls. 

Behavioral testing took place between 11:30 and 13:00. The behavior of each 

fish was recorded for 6 min and later analyzed with the software Ethovision 8.0 

(Noldus, Wageningen, The Netherlands). Swimming patterns of fish on days 1 

and 5 are shown in appendices 1 and 2.  
 

Fig. 2. Experimental procedure. 2A: Experimental manipulation of the control group (days 1 – 8), 
the FC D1 group (days 2 – 8) and FC D5 group (days 1 – 4; 6 – 8). Fish were individually caught, 
restrained in the net for 15 sec and transferred without further manipulation to the novel tank 2B: 
Experimental manipulation of the FC D1 group (on day 1) and FC D5 group (on day 5); 
experimental fish were individually caught, restrained in the net and received the fin clip prior to 
being transferred to the novel tank. 2C: Summary of the manipulation over the days.  

 

2.4 Fin clip electron microscopy 

 

Fin clips were immersed in glutaraldehyde (2.5% v/v), K2Cr2O7 (1% w/v) and 

OsO4 (1% w/v) in 0.15 M cacodylic acid (pH 7.5) and embedded in Spurr’s 

resin. Ultrathin sections (70 – 90 nm) were cut with an ultratome and mounted 

on square mesh nickel grids. On-grid sections were post-stained for 2 min with 

uranyl acetate and then lead citrate for 2 min and rinsed thrice with doubly 

distilled water. Nerve fiber types in cross sections were categorized based on 
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diameter and the presence of myelin to distinguish A-δ and C-fibres (Lynn, 

1994; Sneddon, 2002). 

 

2.5 Video analyses  

 

 The novel tanks were virtually divided into a lower and upper part. The 

following parameters were scored: time spent in the upper part of the tank, 

number of transitions (entries) to the upper part, number and duration of 

freezing bouts, total distance swam and mobility. The immobile threshold was 

determined at 3% and the highly-mobile threshold at 75%, with a 10 samples 

averaging interval (Cachat el al, 2011). Freezing was defined as total absence of 

movement except opercular movements and eye movements for 2 sec or longer 

(Wong et al, 2010). Freezing was scored manually on days 1 and 5 when the 

fish showed immobile behavior (mobility below 3% of total body length). 

Changes in these parameters reflect high stress and anxiety (Wong et al, 2010; 

Cachat et al, 2011). 

 

2.6 Statistics 

  

 Data are expressed as means ± standard deviation (SD). When data 

were normally distributed (Shapiro-Wilk test) and variances homogenously 

distributed (Levene test), a one-way ANOVA was performed to assess statistical 

significance of differences between treatments, followed by Tukey-test as post-

hoc test. When data were not normally distributed, the non-parametric 

Kruskal–Wallis test was used to assess statistical significance of differences 

between treatments. On independent samples Student t-test was performed to 

confirm habituation after 4 days of procedure, by comparing the following 

parameters: total distance travelled, time spent in the upper/lower sections, 

frequency in the upper section, immobility duration, freezing bouts and 

freezing duration between the period days 1 – 4 and the period days 5 – 8, for 

the control group (Table 1). 

 

3. Results 

 

3.1 Electron microscopy 

 

 Nerve bundles were identified in the tailfin region of long-fin zebrafish 

(Fig. 3). The presence of A-δ and C-fibres was confirmed based on diameter and 

presence/absence of myelin sheet. 
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Fig. 3. TEM of zebrafish Danio rerio caudal fin sections showing nerve bundles (scale bar is 1 μm). 

Both unmyelinated C-fibres (1) and myelinated A-fibres (2) are present within the nerve.  

 
3.2 Habituation to the novel tank procedure. 

 During the second period of the experiment (days 5 – 8), the control 
fish significantly swam a greater distance, frequented more the upper zone of 
the novel tank and reduced freezing-duration compared to the first period of 
the experiment (days 1 – 4). The number of freezing bouts and duration of 
freezing decreased over time (Table 1). 

Parameter Average (SD) days 1 – 4 Average (SD) days 5 – 8 P value 

Total distance (mm) 1413 (556) 1837 (550) P < 0.01 * 

Time in lower region (s) 282.9 (64) 262.5 (67) P = 0.24 

Time in upper region (s) 77.1 (64.3) 97.5 (67.1) P = 0.24 

Frequency in upper region 18.5 (12.7) 26.1 (14.4) P < 0.05 * 

Immobile duration (s) 55.4 (96.2) 23.5 (35.7) P = 0.22 

Freezing bouts 1.1 (2.3) 0.2 (0.4) P > 0.05 

Freezing duration (s) 18.9 (43) 2.1 (5.9) P < 0.05 * 

Table 1. Averages (SD) of the total distance travelled, Time spend in the lower and upper regions, 
frequency in the upper region, immobile duration, freezing bouts and freezing durations for the 
periods between days 1 – 4 (N=28) and days 5 – 8 (N=28), for the control group (7 fish). Statistical 
differences between the two periods are highlighted by an asterisk.  

 

3.3 Behavior: day 1 

 

 Total distance travelled is presented in Fig. 4. No statistical difference 

was observed on day 1 between the three groups concerning total distance 

travelled (Fig. 4, Kruskall-Wallis; H (2, N = 22) = 4.35, P = 0.80), zone preference 

(Fig. 5) or mobility (Fig. 6A). Fish from all treatment groups occasionally froze 
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on day 1, without significant differences between groups both regarding 

freezing bouts and freezing duration (Kruskal-Wallis, H (2, N = 22) = 0.54, P = 

0.76). Within treatment groups fish showed great variety in freezing frequency 

as well as duration (inter-individual differences) (Fig. 7A). 

 

3.4 Behavior: day 5 

 

 On day 5, the group receiving the fin clip on this day (FC D5) swam 

significantly less than the control and the group receiving the fin clip on the 1st 

day (FC D1); 1039 (521) cm vs. 1961 (669) cm and 2150 (843) cm, respectively 

(Fig. 4; One-way ANOVA followed by Tukey test, P = 0.01).  

 In addition to the reduced swimming distance, there is a trend on day 5 

towards reduced activity and freezing. Only the group receiving the fin clip on 

this day showed occasional immobility (< 3% body length per 10 samples 

average) events (Fig. 6B); no statistically significant difference was found 

(Kruskal-Wallis, H (2, N = 23) = 5.77; P = 0.06). Only 3 individuals from the 

group receiving the clip on this day (FC D5) occasionally froze (Fig. 7B). No 

freezing occurred for the two other treatments (control and FC D1) and no 

statistically significant difference was found (Kruskal-Wallis, H (2, N = 23) = 

6.15, P = 0.05). No difference in time spent in the upper zone between the 3 

treatments was found (Fig. 5). 

Fig. 4. Averages (SD) of the total distance travelled during the daily 6-min trial (cm). FC: fin clip 
given to the designed group: day 1 for the FC D1 group and day 5 for the FC D5 group. Asterisks 
stand for significant differences (one-way ANOVA followed by Tukey test, P = 0.01). 
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Fig. 5. Average (SD) time spent in the lower section of the novel tank during the daily 6-min trial 
(cm). FC: fin clip given to the designed group: day1 for the FC D1 group and day 5 for the FC D5 
group 

  
 
 
 

Fig. 6. Average mobility (s) during the 6-min trial on day 1 (6A) and day 5 (6B). Immobile threshold 

was set at 3% total body length and highly mobile threshold at 75% total body length, with a 10 

samples average. FC: fin clip given to the designed group: day1 for the FC D1 group and day 5 for 

the FC D5 group. 
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Fig. 7. Freezing bouts (7A) and freezing duration (7B) during the 6 min trials on day 1 (grey) and 
day 5 (black). FC: fin clip given to the designed group: day1 for the FC D1 group and day 5 for the FC 
D5 group. 

 

4. Discussion 

 

4.1 Parameters affected and comparison with classical studies 

  

 The tailfin clip did not affect ‘classical’ parameters in the novel tank test 

such as freezing and compartment preference. No effect regarding spatial 

preference and latency to first explore the upper zone or freezing behavior was 

found, regardless of the day when the fin clip was given. On the 1st day, we 

observed no differences between the treatment groups, regardless whether 

they received the fin clip (FC D1 group) or not. The apparent no-effect of the fin 

clip on the 1st day could be explained by the existence of a motivational conflict: 

the novelty test seems to affect more the behavior of the fish than the fin clip. 

Freezing behavior was observed in all the treatment groups, mobility was not 

different between groups; fish were mostly mobile and only some and 

occasionally fish were immobile. On the 5th day of procedure, the fish receiving 

the tailfin clip were less active than the 2 other groups: they swam significantly 

less, and the freezing behavior occurred in three individuals from this group 

only, while none of the fish in the two other groups did. This overall reduction 

of activity can be attributed to the painful stimulus itself; there is no 

motivational conflict on that day; zebrafish are habituated to the novel tank 

procedure after 4 days (Wong et al, 2010). When the fish received the 

potentially painful stimulus on the 5th day (when we anticipated that 

habituation had occurred), the fish indeed were disturbed again by the clip. The 

behavioral changes of the group receiving the fin clip on the 5th day, where no 

motivational conflict exist, are clear indications that a tailfin clip has an effect 

on habituation and therefore might be considered first of all noxious, and 

potentially painful alike.  
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4.2 Choice of the pain stimulus, behavioral test and model species  

 

 In a previous study on Nile tilapia (Oreochromis niloticus) we have 

shown that a tailfin clip may be considered a potentially painful stimulus for 

fish (Roques et al, 2010). In this study on zebrafish we demonstrated that 

behavior of the fish was clearly affected by the fin clip, altering swimming 

activity up to 6 h post stimulus. In a follow-up study, where we gave an electric 

shock to the tail of Mozambique tilapia (Oreochromis mossambicus), we 

observed a significant decrease of the general activity compared to the handled-

only group (Roques et al, 2012), which was taken to indicate a species-specific 

response to a noxious stimulus. In the current study, we aimed to investigate in 

more detail the effect of a tailfin clip on fish behavior related to anxiety, using 

the novel tank paradigm and the model species zebrafish, Danio rerio. The novel 

tank paradigm has been intensively studied in this species, regarding 

habituation to this procedure and effects of anxiolytic drugs (Becan et al, 2009; 

Stewart et al, 2010; 2012).  

 An array of anxiolytic drugs has been shown to suppress the initial 

response (diving to the bottom, freezing, erratic movements and decreased 

exploration; Levin et al, 2007), with more rapid and enhanced exploration of 

the novel environment (Stewart et al, 2010). Habituation to this procedure, also 

shown by this reduction of initial avoidance response and enhanced 

exploratory behavior has been shown to occur after 4 days consecutive 

exposure to this novel tank test (Wong et al, 2010). The comparison of several 

parameters such as total distance travelled, frequency in the upper zone and 

freezing duration for the control group, between periods days 1 – 4 and days     

5 – 8 confirms the habituation to the novel tank procedure demonstrated by 

Wong and colleagues (2010). In the second period (days 5 – 8), the fish had 

habituated to the procedure and showed more exploratory behavior. Therefore, 

we decided to apply a tailfin clip on the 1st day (where the behavioral response 

is affected by both the novelty and the fin clip procedure) and the 5th day (when 

the fish are habituated to the novel tank) of the experimental period and 

compare our results with existing literature. The cutting of the fin per se did not 

affect the swimming capacity as swimming was not different between the 

different groups on day 1. But the motivation to swim seems affected as we 

concluded from the response to the fin clip given on day 5. 

 

4.3 Limitations of this study and perspectives 

 

 This study demonstrated an effect of a tailfin clip on habituation of 

zebrafish to novelty. We observed high individual variation within treatment 
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groups; not all fish behaved similarly, resulting in high variation. Inter-

individual behavior variance is normal for every animal species, including fish 

(Pike et al, 2008; Wolf and Weissing, 2012). The effects seen in our studies 

warrant more studies with larger groups of fish to substantiate individual 

variation.  

 The fin clip procedure requires a manual restraint of the animals out of 

the water, albeit for a very short period of time. This procedure is not ideal as 

air exposure in particular is known to be a severe stressor for fish (Arends et al, 

1999). It is know that stress may lead to analgesia. This potential confounder 

was overcome/controlled by handling the fish from the other groups for a 

similar (short) period of time. Ideally, the painful stimulus should be applied 

under water, which is not feasible with zebrafish tailfin clipping. 

 Zebrafish are social animals and a certain hierarchy in each home tank 

was established by the fish, with four individuals per tank. The next step of this 

line of work would be to investigate the effect of a tailfin clip on a group, either 

by clipping the whole group or few individuals of a cohort and monitor group 

effects, with possible involvement of alarm substances and effects on behavior, 

as demonstrated before (Ashley et al, 2009).  

 Also, analysis of the 3-dimensional behavior (Cachat, 2013) may add 

resolution to the analysis of subtle responses to stress and pain. 
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Abstract 

The threshold concentration for NH3 in rearing water of African catfish 

(Clarias gariepinus) was assessed. African catfish with an initial mean (SD) 

weight of 141.0 (24) g were exposed to 5 different Tamm [sum of NH3 and NH4
+] 

concentrations: 0.37 (Control), 1.06, 2.12, 5.16 and 19.7 mM, which concurs 

with NH3 concentrations of 4 (Control), 14, 38, 176 and 1084 μM. Plasma 

concentrations of NH4
+, cortisol, glucose and lactate, plasma osmolality, gill 

morphology, branchial Na+/K+-ATPase activity, feed intake and specific growth 

rate were monitored. No effect of water NH3 on plasma NH4
+ concentrations 

was detected. Feed intake and specific growth rate were severely affected at 

exposure to water NH3 concentrations above 90 μM (calculated EC10 values: 89 

and 122 μM). No major disturbances in physiological blood parameters were 

observed at these NH3 concentrations, but gill morphology (a remarkably 

sensitive stress indicator) deteriorated significantly. Based on the lower limit of 

the 95% confidence interval for EC10, we advise for African catfish not to exceed 

a water NH3 concentration of 24 μM (0.34 mg NH3-N/L). This finding is relevant 

for design and management of African catfish production systems. 
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1. Introduction 

 

Fish produce nitrogenous wastes through catabolism of amino acids 

(Wood, 1993). The majority of fresh water and marine teleost fish are 

ammonioteles and excrete most of their nitrogenous wastes as ammonia across 

the gills to the water (Wilkie, 2002). The mechanisms involved in branchial 

ammonia excretion remain controversial. In the most recently proposed model 

for branchial ammonia excretion, simple NH3 diffusion down the partial 

pressure gradient is the predominant mechanism under normal conditions. At 

high water ammonia concentrations, when NH3 diffusion is impaired or even 

reversed, several active NH4
+ excretion pathways, involving Rhesus (Rh) 

glycoproteins as membrane transporters, facilitate ammonia efflux (Wright and 

Wood, 2009). 

High water ammonia leads to rapid accumulation of ammonia in 

plasma and tissues (Wright et al, 2007), where it is mainly present as NH4
+ at 

physiological pH (Wilkie, 2002). High internal NH4
+ causes neurotoxicity 

(Cooper and Plum, 1987 in Wilkie, 2002). 

High water ammonia, caused by high feed loads and high fish densities, 

is an important limiting factor for intensive aquaculture (Boeuf et al, 1999). 

Water ammonia should therefore be kept below species-specific threshold 

levels. 

The African catfish (Clarias gariepinus) is empirically known to be 

highly tolerant to ammonia toxicity (Ip et al, 2004a). Several defense strategies 

allow this fish to cope with increased internal ammonia, for instance during 

prolonged air exposure or during periods of draught, when the fish survive in 

mud pools. The defense strategies include active excretion of NH4
+, reduced 

ammonia production by reduction of proteolysis and/or reduced amino acid 

catabolism and a high ammonia tolerance of tissues and cells. Moreover, it 

appears that this catfish reduces membrane and skin permeability to NH3 in 

response to high water ammonia concentrations (Ip et al, 2004a). 

The NH3 threshold concentrations for physiological disturbances, feed 

intake and growth are unknown for African catfish. As a result it is unclear 

whether intensive farming of this fish species at high water NH3 concentrations 

results in physiological disturbances, reduced feed intake and reduced growth, 

and thus may impinge on the welfare of the fish. In the present study, African 

catfish was exposed to increased water ammonia for 34 days to establish NH3 

threshold concentrations. 
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2. Materials and methods 

2.1 Experimental conditions 

African catfish (Clarias gariepinus) were obtained from Fleuren-

Nooijen BV, Someren, The Netherlands. Fish (n = 168) were randomly divided 

over 12 30-L rectangular glass tanks and allowed to acclimatize to the 

experimental conditions for 7 days. At the start of the 34 days experiment, the 

overall initial mean (SD) individual weight was 141.0 (24) g. The resulting 

mean stocking density was 65.8 kg/m3, well below fish densities found at 

commercial farms for this size class (100 to 300 kg/m3, Van de Nieuwegiessen 

et al, 2009). The treatment of the fish was in accordance with Dutch law 

concerning animal welfare, as tested by the ethical committee for animal 

experimentation of Wageningen UR Livestock Research (number 2009045.a). 

We aimed at a threefold ammonia concentration increase for five 

consecutive treatments and a concentration range around the highest total 

ammonia concentrations observed at commercial farms (4.2 to 5.0 mM) 

without exceeding the acute toxic total ammonia concentration (96 h LC50) of 

380 mM (Britz, 1988 in Ip et al, 2004b). Five (1 to 5) different total ammonia 

[Tamm = sum of NH3 and NH4
+] concentrations in the rearing water were used: 

0.37 (Control), 1.06, 2.12, 5.16 and 19.7 mM. These TAmm concentrations 

concurred with NH3 concentrations of 4 (Control), 14, 38, 176 and 1084 μM 

(Table 1). Treatments were executed in duplicate and assigned randomly to the 

tanks. Treatments are hereafter referred to as 4, 14, 38, 176 and 1084 μM NH3. 

During the acclimatization and experimental period, all tanks were 

supplied with local tap water via a header tank at a flow of 185 L per day for 

each tank. During the experimental period, experimental ammonia 

concentrations were realized by infusion of ammonium chloride (NH4Cl) stock 

solutions (Table 1). Stock solutions were pumped into the tanks by a peristaltic 

pump (Watson Marlow 505 S; Rotterdam, The Netherlands) at a flow of 4.75 L 

per day per tank. Each tank was equipped with an air stone to mix the stock 

solution with the tank water. Flows were monitored and adjusted as required 

to reach the experimental ammonia concentrations. Sodium bicarbonate 

(NaHCO3) was added to the stock solutions to adjust the pH. In addition, sodium 

chloride (NaCl) was added to the stock solutions to compensate for the 

differences in chloride concentrations arising from NH4Cl addition. Total 

predicted sodium concentrations in the tanks from NaHCO3 and NaCl combined 

were equal among treatments (Table 1). Fresh stock solutions were prepared 

daily. The salinity of the tank water resulting from the infusion of stock 
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solutions did not exceed 5 g/L. According to Clay (1977) African catfish tolerate 

salinities up to 10 g/L. 

 

Treatment 
NH4Cl 

(g/10 L) 

NaHCO3 

(g/10 L) 

NaCl 

(g/10 L) 

Total Cl− 

dose 

(g/10 L) 

Total Na+ 

dose 

(g/10 L) 

Predicted tank 

[Na+] 

(g/L) 

Predicted tank 

[Cl−] 

(g/L) 

1 0 0 1555 933 622 1.6 2.4 

2 15 9 1549 939 622 1.6 2.4 

3 45 47 1523 943 622 1.6 2.4 

4 135 180 1432 948 621 1.6 2.5 

5 404 530 1192 982 620 1.6 2.5 

 

Table 1. Compositions of the daily prepared treatment specific stock solutions and the calculateda 
TAN, sodium and chloride concentrations in the tanks for all treatments. 
a Based on equal flow rates per tank of 4.75 L/day for the stock solutions and 185 L/day for the tap water flow. 

Water quality (Table 2) was monitored by daily (between 13:00 and 

14:00) measurements of total ammonia (TAmm) concentrations 

(photometrically, Hach Lange DR2800), water temperature, pH, dissolved 

oxygen concentrations (Hach Lange HQ 40 multimeter) and conductivity (WTW 

Cond 315i) in all individual experimental tanks. NH3 concentrations were 

calculated from the temperature, pH and salinity dependent molar fraction of 

NH3 and the measured TAmm concentrations (Creswell, 1993). Ammonia 

concentrations were gradually increased to the designated concentrations 

during the first 4 days of the experimental period. Mean water temperature was 

27.0°C throughout the experimental period. 

Treatment 
NH3 TAmm DO 

Water 

 temperature 
Conductivity 

pH range 

(μM) (mg N/L) (mM) (mg N/L) (mg/L) (°C) (mS/cm) 

1 4 0.06 0.37 5.2 4.8 27.0 7.18 7.17–7.72 

2 14 0.19 1.06 14.8 4.5 27.0 7.07 7.07–7.64 

3 38 0.53 2.12 29.7 4.9 27.1 7.44 7.30–7.83 

4 176 2.47 5.16 72.2 5.1 27.0 7.68 7.26–8.18 

5 1084 15.2 19.7 275.1 5.6 27.0 8.78 7.46–8.66 

 

Table 2. Mean values per treatment for NH3, total ammonia (TAmm) and dissolved oxygen (DO) 
concentrations, water temperature, conductivity and the pH range in the treatments during the 
experimental period. 
 

2.2 Plasma sampling 

One day before ammonia exposure started (day 0), the fish from two 

tanks were sampled. After 34 days exposure to ammonia, the fish from the 10 
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remaining tanks were sampled (two tanks for each of the five treatments, 12 

fish per tank). Fish were rapidly caught with a net and quickly anaesthetized in 

0.1% (v/v) 2-phenoxyethanol (Sigma, St. Louis, USA). Within 2 min, blood had 

been taken by puncture of the caudal vein using a lithium heparinized Vacuette 

blood collection system (Greiner Bio-One GmbH, Kremsmünster, Austria). The 

blood was centrifuged for 10 min (14,000 g, 4 °C) and the plasma obtained was 

stored at −20 °C. 

2.3 Plasma NH4
+ 

Plasma NH4
+ was determined using a commercially available test kit 

(Instruchemie, Delfzijl, The Netherlands), with a protocol adapted for a 96-well 

microplate application. 

2.4 Plasma cortisol 

Cortisol was measured by radioimmunoassay (Metz et al, 2005) with 

commercially available antiserum (Campro Scientific, Veenendaal, The 

Netherlands). Samples of 10 μL of 1:5 (v/v) water diluted plasma were 

incubated overnight at 4 °C with 100 μL first antibody (IgG-F-1; 1:400), 

2000 cpm 125I-cortisol (Amersham, Buckinghamshire, UK) and 100 μL 

secondary antibody (GARGG; 1:160). All constituents were dissolved in cortisol 

RIA buffer [0.063 M Na2HPO4, 0.013 M Na2EDTA, 0.02% (w/v) NaN3, 0.1% 

(w/v) 8-anilino-1-naphthalene sulfonic acid (Sigma) and 0.1% (w/v) bovine 

gamma globulin (Sigma)]. Immune complexes were precipitated by addition of 

1 mL ice-cold 5% (w/v) polyethylene glycol and 2% (w/v) bovine serum 

albumin (Sigma) and subsequent centrifugation (20 min, 2000 g, 4 °C). Pellets 

were counted in a gamma counter (1272 Clinigamma, LKB Wallac, Turku, 

Finland). 

2.5 Plasma glucose and lactate 

Plasma glucose and lactate were measured with commercially available 

enzymatic test kits (Instruchemie, Delfzijl, The Netherlands), with protocols 

adapted to a 96-wells microplate. For glucose, 10 μL sample or standard 

(5.55 mM glucose) was mixed with 200 μL reagent and incubated for 10 min at 

25 °C. Absorbance was read within 60 min at 495 nm. For lactate, 10 μL sample 

or standard (4.44 mM lactate) or blank (8% perchloric acid) was mixed with 
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290 μL of lactate reagent and incubated for 20 min at 37 °C. Absorbance was 

read at 355 nm. 

2.6 Osmolality 

Plasma osmolality (sample volumes: 50 μL) was measured with a 

cryoscopic osmometer (Osmomat 030, Gonotec, Germany). Deionized water 

(0 mOsmol/kg) and a standard solution (300 mOsmol/kg) were used as 

reference. 

2.7 Gill morphology 

One gill arch was removed immediately after blood sampling and 

placed overnight in Bouin's fixative (75 mL saturated picric acid, 25 mL 

saturated formaldehyde, 5 mL acetic acid). Gill sections were made to include 

the trailing edge of the filament where the chloride cells reside. Gill sections 

were prepared according to Dang and colleagues (2000). After dewaxing, 

blocking of endogenous peroxidase with 2% (v/v) H2O2 and blocking of non-

specific sites with 10% (v/v) normal goat serum, slides were incubated 

overnight with a monoclonal antibody against chicken Na+/K+-ATPase (final 

dilution of 1:500; IgGα5, Developmental Studies Hybridoma Bank, Department 

of Biological Sciences, University of Iowa, USA). Goat anti-mouse (Nordic 

Immunology, Tilburg, The Netherlands) was used as a second antibody (1:150). 

The slides were subsequently incubated with mouse peroxidase anti-

peroxidase (1:150) (M-PAP, Nordic Immunology). In the peroxidase 

reaction 0.025% (w/v) 3,3′-diaminobenzidine (DAB) was used as chromogen in 

the presence of 0.0005% (v/v) H2O2. 

2.8 Branchial Na+/K+-ATPase activity 

The specific, Na+- and K+-dependent, ouabain-sensitive ATPase activity 

was measured in homogenates of gills preserved in SEI buffer (150 mM sucrose, 

10 mM EDTA, 50 mM imidazole: pH 7.4) as described in detail by Metz and 

colleagues (2003). Aliquots (5 μL in triplicate) of homogenate (protein content 

of 1 mg/mL) were incubated in assay medium for 15 min at 37 °C. The specific 

activity was calculated by subtracting the K+-independent, ouabain-insensitive 

ATPase activity from total ATPase activity. ATP hydrolysis was assessed by the 

amount of inorganic phosphate formed per min per mg of protein. Sample 
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protein content was estimated with a commercial protein kit (BioRad, Hercules, 

CA, USA), and bovine serum albumin as standard. 

2.9 Specific growth rate, feed intake and feed conversion rate 

On day 34, the fish in each tank were counted and individually weighed 

(Mettler PM 34 Delta range) to the nearest 1 g, to calculate the specific growth 

rate (SGR) as follows: 

 

 

t
WWSGR t

100
))ln()(ln( 1   

 

 

Where SGR = specific growth rate (%/d), Wt = mean weight at day 34 (g), 

W1 = mean weight at day 1 (g) and t = number of days. 

Feed (Catfish type Me-3; Skretting, Boxmeer, The Netherlands) with 

49% crude protein and 11% crude lipids was administered twice daily at 9:00 

and 17:00 until visually observed satiation. Feed loads per tank were recorded. 

Uneaten pellets were collected from each tank 1 h after the two daily feeding 

sessions. Feed loss per tank was calculated as the total number of uneaten feed 

pellets multiplied by 0.0966 g per pellet, determined by weighing 100 feed 

pellets. Daily feed intake per tank was defined as the difference between daily 

feed load and feed loss. Total feed intake per tank resulted from the sum of the 

daily feed intake. 

Total feed intake and biomass increase per tank were used to calculate 

feed conversion rate (FCR) as follows:  

 

 

)( 11 WnWn

TFI
FCR

tt 
  

 

 

Where FCR = feed conversion rate (g/g), TFI = total feed intake (g), Wt = mean 

weight at day 34 (g), W1 = mean weight at day 1 (g), nt = number of fish at day 

34 and n1 = number of fish at day 1. 
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2.10 Statistics 

2.10.1 Physiological parameters 

Physiological parameters are expressed as mean (SD) of the individual 

measurements per treatment. For each treatment, 24 fishes were sampled; in 

some instances not all samples collected were analyzed, either because samples 

were accidentally lost or because predicted low within treatment variation in 

readout allowed assessment of significance with lower sample numbers. Where 

necessary, data were log-transformed to obtain homogeneity of variance of 

residuals across treatment levels. Mean values for physiological parameters 

were tested for differences among the treatments using linear mixed models 

(REML) with treatments as fixed effects and tank as a random effect. Only in 

case significant treatment effects were detected, a least significance difference 

(LSD) post-hoc analysis was used to estimate the level of significance between 

mean values. For both REML and LSD analysis the fiducial limit was set at 5%. 

2.10.2 Feed intake and growth 

Total feed intake, specific growth rate (SGR) and feed conversion rate 

(FCR) were expressed as mean per treatment (N = 2). Mean values per 

treatment were tested for significant differences among the treatments by one-

way ANOVA. Only in case significant treatment effects were detected, a least 

significance difference (LSD) post-hoc analysis was used to estimate the level of 

significance between mean values. For both ANOVA and LSD analysis the 

fiducial limit was set at 5%. 

2.10.3 Concentration–effect curves 

NH3 concentration-effect curves were fitted for specific growth rate 

(SGR) and total feed intake (TFI) using a log-logistic model (Seefeldt et al, 

1995). As a blank could not be included, the effects are expressed as absolute 

values. Curve-fitting was carried out with the Marquadt and Levenberg 

algorithm (Moré, 1978) as provided in the PRISM 4.00 software package 

(Graphpad Software, Inc.). The 10% effect concentrations (EC10) and their 95% 

confidence limits were calculated (Miller and Miller, 2000). 



 
 

80  

3. Results 

3.1 Plasma NH4
+ 

Plasma NH4
+ concentrations did not differ among treatments (REML, 

P = 0.10). Mean plasma NH4
+ concentrations ranged between 159.2 and 

217.8 μM in catfish exposed to water NH4
+ levels ranging from 4 to 1084 μM. 

3.2 Plasma cortisol 

Plasma cortisol concentrations did not differ among treatments (REML, 

P = 0.25). The mean (SD) plasma cortisol concentration in the control (4 μM 

NH3) was 44.5 (35.1) nM. In the other experimental groups, mean (SD) 

concentrations ranged between 33.6 (26.4) (1084 μM NH3) and 72.9 (52.7) nM 

(38 μM NH3). The initial concentration (t = 0) was 30.0 (18.2) nM. 

3.3 Plasma glucose and lactate 

A significant treatment effect was observed for plasma glucose 

concentrations (REML, P = 0.002). In the control (4 μM NH3) the glucose 

concentration was slightly but significantly higher at 3.51 mM than the 

concentrations seen in fish kept in 14, 38 and 176 μM NH3; the highest 

concentration (4.8 mM) was observed in the 1084 μM NH3 treatment. Plasma 

lactate concentrations were similar in all groups (REML, P = 0.25). The mean 

plasma lactate concentration in the control was 3.84 mM. The concentrations in 

the 14, 38 and 176 μM NH3 treatments were within the same range. 

3.4 Plasma osmolality 

A significant treatment effect was observed for plasma osmolality 

(REML, P = 0.002). The mean plasma osmolality in the control (4 μM NH3) was 

267.1 mOsmol/kg The osmolality in the 14, 38 and 176 μM NH3 treatments 

were within the same range and no significant differences were detected among 

these. Plasma osmolality in the 1084 μM NH3 treatment group rose to 

347 mOsmol/kg, a significantly higher value than found in any other treatment. 
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Table 3. Mean (SD) values at the start (t = 0) and per treatment for the end (t = 34 d) of the 
experiment for plasma cortisol, plasma glucose, plasma lactate and plasma NH4+ concentrations, 
plasma osmolality and branchial Na+/K+-ATPase activity. Mean values with different superscripts 
are significantly different (REML, P values as shown). SD = standard deviation of means values per 
treatment, n as indicated in the table. t = 0 values were not considered in the statistical analysis. 



 
 

82  

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Histology of gill epithelium immunohistochemically stained for Na+/K+-ATPase-rich cells 
(chloride cells) of the 4 μM (A) 14 μM (B) 38 μM (C) 176 μM (D) and 1084 μM (E) NH3 treatment 
groups (400× magnification). Thickening of inter-lamellar and lamellar epithelium (inter-lamellar 
space reduction) increases gradually with increasing water ammonia level (C). The 1084 μM 
treatment (E) reveals distal and basal hyperplasia with lamellar fusion, epithelial hypertrophy 
accompanied with enhanced mucus secretion. Legend: ile = inter-lamellar epithelium; le = lamellar 
epithelium; ils = inter-lamellar space; cc = chloride cell; gf = gill filament; gl = gill lamellae. 
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3.5 Gill morphology 

Gill morphology deteriorated with increasing water ammonia 

concentration (Fig. 1A–E): the inter-lamellar and lamellar epithelium thickened 

and the inter-lamellar space got reduced. The effect was directly visible in the 

38 μM NH3 treatment (Fig. 1C) and most profound in the 1084 μM treatment 

(Fig. 1E). In the latter group, distal and basal hyperplasia with lamellar fusion, 

epithelial hypertrophy and enhanced mucus secretion were observed.  

Chloride cells in the control (4 μM NH3, Fig. 1A) were mainly present in 

the inter-lamellar area and to a lesser extent in the lamellae. With increasing 

NH3 exposure, the number of chloride cells increased, as did the number of 

chloride cells that had migrated to the lamellae (Fig. 1B–E). 

3.6 Branchial Na+/K+-ATPase activity 

A significant treatment effect was observed for branchial Na+/K+-

ATPase activity (REML, P < 0.001). In the control (4 μM NH3) the mean 

branchial Na+/K+-ATPase activity was 3.4 (1.5) μM Pi/h per mg protein. The 

activity in the 14, 38 and 176 μM NH3 treatments were within the same range. 

Na+/K+-ATPase activity in the 1084 μM had significantly increased (more than 

2-fold) compared to the other treatments at 10.2 (3.6) μM Pi/h per mg protein. 

3.7 Feed intake, specific growth rate, feed conversion rate and mortality 

No mortality was observed during these experiments. Total feed intake 

differed among the treatments (one-way ANOVA, P < 0.01, Table 4). The total 

feed intake was highest in the 14 and 38 μM NH3 treatments. Total feed intake 

was lower in the 176 μM NH3 treatment compared to the control and 14 and 

38 μM NH3 treatments. Total feed intake was strongly reduced in the 1084 μM 

NH3 treatment compared to all other treatments. The differences in total feed 

intake among treatments developed over time (Fig. 2). 

Specific growth rate (SGR) differed among treatments (ANOVA, 

P < 0.01, Table 4). The highest SGR was observed in the 4, 14 and 38 μM NH3 

treatments. The SGR in the 176 μM NH3 treatment was lower than observed for 

the 14 and 38 μM NH3 treatments, but equal to the SGR observed in the control 

(4 μM NH3). The SGR in the 1084 μM NH3 treatment was lower than in all other 

treatments. 
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Feed conversion rates (FCR) differed among treatments (one-way ANOVA, 

P = 0.03), with an approximately 30% higher mean FCR for the 1084 μM NH3 

treatment than for the other treatment (Table 4). 

 

Treatment 
Ammonia 

(μM) 

Final weight 

(g) 

Total feed intake 

(g) 

SGR 

(%/BW/d) 
FCR 

1 4 412 (1.2)ab 2339 (2)a 3.25 (0.01)ab 0.72 (0.004)a 

2 14 468 (10.4)a 2705 (104)b 3.64 (0.07)a 0.69 (0.005)a 

3 38 466 (44.8)a 2668 (170)b 3.61 (0.29)a 0.69 (0.004)a 

4 176 370 (17.1)b 2017 (181)c 2.92 (0.14)b 0.73 (0.011)a 

5 1084 224 (9.6)c 986 (32)d 1.40 (0.13)c 1.00 (0.15)b 

P-value 
 

< 0.01 < 0.01 < 0.01 0.03 

  
Table 4. Mean (SD) values per treatment (N = 2) for final weight, specific growth rate (SGR), total 
feed intake and feed conversion rate (FCR). Mean values with different superscripts are 
significantly different (one-way ANOVA, P values as shown). 

3.8 EC10 for total feed intake and SGR 

The concentration–effect curves for total feed intake and SGR in 

relation to the water NH3 concentration (Fig. 3A and B), demonstrate that for 

total feed intake the EC10 for NH3 is 89 μM (1.24 mg NH3-N/L), with a 95% 

confidence interval from 24 to 321 μM. For SGR, the EC10 for NH3 is 122 μM 

(1.70 mg NH3-N/L), with a 95% confidence interval from 44 to 330 μM. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Fig. 2. NH3 exposure and mean (N = 2) cumulative feed intake. 
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Fig. 3. Concentration–effect curves for total feed intake (TFI) (a) and specific growth rate (b) in 

relation to the water NH3 concentration. TFI = 2559 / (1 + 10(2.819 − log[NH3]))* − 1.095 (r2 = 0.93) and 

SGR = 3.519 / (1 + 10(2.877 − log[NH3]))* − 1.205 (r2 = 0.95), where [NH3] is the NH3 concentration (μM). 

4. Discussion 

African catfish, Clarias gariepinus, successfully control plasma NH4
+ 

concentrations within physiological concentrations over a wide range of water 

ammonia concentrations that would be lethal to many other fishes. However, 

the high ammonia concentrations did affect the fish, as revealed by other 

parameters: plasma glucose, plasma osmolality, branchial Na+/K+-ATPase 

activity, gill morphology, specific growth rate (SGR), total feed intake (TFI) and 

feed conversion rate (FCR) were affected, albeit that this species is very tolerant 

to ammonia compared to other fish. 

4.1 Plasma NH4
+ 

In African catfish plasma, TAmm is predominantly present (84–98%) as 

NH4
+ (Ip et al, 2004b). The capability to maintain a low plasma NH4

+ 

concentration as seen in this study during exposure to millimolar water NH3 

has been previously demonstrated for African catfish (Ip et al, 2004b): plasma 

NH4
+ concentrations after 5 days exposure to 0.69 mM ambient NH3 came to 

2.12 mM, a value approximately 10 times higher than reported here after 

34 days exposure of the same species to up to 1084 μM NH3. This suggests that 

in the African catfish exposure to high water NH3 initially results in a plasma 

NH4
+ peak due to an NH3 influx, followed by the on-set of NH3 defense 

mechanisms over time and a subsequent decline of plasma NH4
+ concentrations 

to basal levels. Time-kinetic studies are needed to exactly define this pattern for 
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African catfish, but our results do support a successful acclimation to rather 

extreme NH3 concentrations. 

African catfish actively excretes NH4
+ against an inward concentration 

gradient as the major defense mechanism against ammonia toxicity (Ip et al, 

2004a; Ip et al, 2004b). The low plasma NH4
+ levels observed in the present 

study can possibly be attributed to this mechanism. Indeed, as sodium is a 

counter ion in this NH4
+ export, the 5 g/L salinity in our experiments may have 

facilitated NH4
+ excretion. We do not exclude contribution of other defense 

mechanisms (see Introduction), but we have no data to directly support such 

mechanisms. 

The maintenance of low plasma NH4
+ at a chronically high water 

ammonia concentration is exceptional among farmed fish species. Plasma 

ammonia concentrations in Atlantic salmon (Salmo salar) and European 

seabass (Dicentrarchus labrax) were found to increase linearly up to 1 mM with 

chronic exposure to high water ammonia with no signs of rebound or 

acclimation (Knoph and Thorud, 1996; Lemarié et al, 2004). 

4.2 Plasma cortisol, glucose and lactate  

Plasma cortisol concentrations were (typically) rather variable among 

individual fish and no significant differences were found among treatments 

(Table 3). In fish, acute stress results in rapid 10 to 100 fold increase of the 

plasma cortisol concentration, followed by a return to basal concentrations 

within hours. Basal concentrations are generally low but variation among life 

stages, sexes, individuals within a population, and species exist (Wendelaar 

Bonga, 1997). In case of chronic stress, such as high water ammonia, plasma 

cortisol concentrations may remain elevated above basal concentrations, 

although at lower concentrations than the concentrations associated with acute 

stress (Wendelaar Bonga, 1997). In the present study, mean plasma cortisol 

concentrations ranged from 30.0 to 72.9 nM, well below a basal concentration 

of 122.8 nM (45.5 ng/mL) reported earlier for the same species (Martins et al, 

2006a; Martins et al, 2006b). We conclude that the current experimental design 

did not induce chronic stress in the fish, except maybe for the highest NH3 

group. The lower plasma cortisol values of the 1084 μM NH3 treatment group 

could be interpreted as an exhaustion of the pituitary–inter-renal-axis as a 

prolonged hyperactivity of this system (Hontela et al, 1992). This is supported 

by the observation of significantly elevated plasma glucose in the 1084 μM NH3 

treatment; the effects are still mild, corroborated by no more than a tendency 

for plasma lactate concentrations to go up in this treatment. High plasma 

glucose and lactate concentrations are both common to stressed fish 
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(Wendelaar Bonga, 1997). The elevated plasma glucose concentration in 

1084 μM NH3 treatment can possibly be explained by the energy demand 

required to fuel active NH4
+ excretion. The elevated plasma lactate 

concentrations in this treatment suggest the use of lactate as substrate for 

gluconeogenesis (Wendelaar Bonga, 1997). This adaptation of the energy 

metabolism may be related to the energy demand of active NH4
+ excretion 

while energy (food) intake is reduced (Table 4). 

4.3 Plasma osmolality 

Plasma osmolality was very similar among the 4 to 176 μM NH3 

treatments and ranged from 267.3 to 278.3 mOsmol/kg. Compared to these 

treatments the plasma osmolality was significantly elevated in the 1084 μM 

NH3 treatment to 347 mOsmol/kg (Table 3). Teleostean fishes are strong 

regulators, tightly regulating their plasma osmolality in a species-dependent 

range of salinities (Varsamos et al, 2005). The water osmolality among 

treatments in this study was essentially constant (see Section 2.1 and Table 1) 

and no significant differences in conductivity of the water were observed 

among treatments (Table 2). The differences in plasma osmolality must 

therefore be attributed to the experimental treatments. Unfortunately, we ran 

out of plasma (the samples compromised the economical pHOx-equipment we 

normally use for plasma mineral analysis) and therefore we cannot support 

plasma osmolality data with sodium and chloride values. However, the elevated 

plasma osmolality in the 1084 μM NH3 treatment group could very well be a 

consequence of facilitated influx of NaCl to the blood in exchange for NH4
+ 

excretion as the higher (compared to normal fresh water) ambient Na+ 

(1.6 g/L) and Cl- (2.5 g/L) levels in the tanks would favor this. On the other 

hand, reduced ion exchange with the environment may decrease plasma 

volume and increase of plasma osmolality (Wendelaar Bonga, 1997), and this 

could also explain this observation. 

4.4 Gill morphology/Na+/K+-ATPase activity 

The branchial epithelium is where gas exchange, ion regulation, acid–

base balance and nitrogenous-waste excretion occur (Evans et al, 2005). The 

direct contact with the medium and delicate structure make gills vulnerable for 

water pollutants and a sensitive site to develop anomalies (Erkmen and 

Kolankaya, 2000), such as epithelial hypertrophy, epithelial lifting, necrosis and 

hyperplasia with lamellar fusion (Evans, 1987; Erkmen and Kolankaya, 2000). 
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The gradual changes in gill morphology observed with increasing water 

ammonia concentrations culminated in drastic lesions in the 1084 μM NH3 

treatment group. Similar morphological impairments were observed in an 

Anatolian khramulya (Capoeta tinca) population living in a stream with high 

concentrations of water pollutants, including NH3 (58 μM; Erkmen and 

Kolankaya, 2000). These histopathological changes may underlie a disrupted 

ion transport (Ip et al, 2004a). The epithelium from the filaments is known to 

be more permeable than the lamellar epithelium, due to the presence of ‘tight 

junctions’ that require strict regulation to guarantee epithelial permeability to 

water and ions (Evans, 1987). One should further consider that the filamental 

epithelium harbors the chloride cells that facilitate the major part of ion 

transports in the gills, and that the inherent cellular make-up involves specific 

junctional complexes to seal the epithelium as required for the transports 

taking place; in control lamellar epithelium chloride cells are normally absent 

and thus one may predict a differential permeability in filamental and lamellar 

epithelium. Hypertrophy of the filament epithelium may represent an adaptive 

response to increase a barrier to reduce the inflow of NH3. Hypertrophy of the 

epithelium associated with lamellar fusions, as well as mucous cells 

proliferation can be interpreted as adaptations to increase the distance 

between the water and the blood flow, reducing the permeability of the gills. 

Whereas chloride cell migration towards the lamellae expands the 

transport capacity to facilitate ion exchange, it may simultaneously increase 

branchial permeability, as it potentially extends the leakiness of the branchial 

epithelium as a whole. Clearly a balance needs to be made up to weigh 

contributions of extra ion transport capacity (more chloride cells) and an 

enhanced branchial surface with increased permeability (and thus passive 

movement of water and ions) to the adaptive response seen. 

Gills are the predominant place for NH3 excretion in freshwater fish 

(Evans et al, 2005; Wilkie, 2002). Chloride cells in the branchial epithelium are 

the site of active excretion of NH4
+ against an inwardly directed electrochemical 

gradient of ammonia, through the Na+/K+-ATPase (1 ATP: 2K+ or NH4
+: 3 Na+) 

(reviewed by Heisler, 1984; Evans, 1987; Evans et al, 2005; Ip et al, 2004a) at 

the basolateral plasma membrane of the chloride cells; NH4
+ may be exchanged 

at the apical membrane for waterborne chloride. As described before, African 

catfish are able to maintain a relatively low plasma NH4
+ concentration despite 

the high external ammonia concentration (Ip et al, 2004b). In this condition, it 

is assumed that as the external ammonia concentration increases, the active 

excretion of NH4
+ is enhanced. This is supported by an increased, energized 

Na+/K+-ATPase mediated export in the 1084 μM treatment group. 
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4.5 Feed intake, specific growth rate, feed conversion rate and mortality 

The absence of mortality in this experiment shows that the lethal 

concentration for NH3 for chronic exposure lies above 1084 μM. The 96 h LC50 

for African catfish is reported to be as high as 380 mM for TAmm (Britz, 1988 in 

Ip et al, 2004b). However the pH at which the acute toxicity was tested is not 

reported, and this hinders comparison just based on NH3 of our study with 

these studies. 

In the first week of the experiment feed intake was similar among 

treatments (Fig. 2). This we attribute to the experimental design where we have 

chosen to gradually built-up the water ammonia during the first 4 days of the 

experiment. 

Surprisingly, a higher total feed intake was observed in the 14 and 

38 μM NH3 treatments compared to the control treatment. We hypothesize that 

the fish overcompensated for the extra energy demand associated to the active 

excretion of NH4
+ by increasing their feed intake, a phenomenon described as 

hormesis (Calabrese, 2005). 

The cumulative feed intake in the 176 μM NH3 treatment and the 

control were equal until approximately day 25 of the experiment and after day 

25, cumulative feed intake was lower in the 176 μM NH3 treatment (Fig. 2). This 

suggests that the fish exposed to 176 μM NH3 were aiming to maintain normal 

feed intake, but were unable to sustain this during prolonged ammonia 

exposure. Overall this resulted in a lower total feed intake in the 176 μM NH3 

treatment compared to the control (Table 3). 

Total feed intake and SGR were lower in the 176 μM NH3 treatment 

compared to the 14 and 38 μM NH3 treatments. Since the feed conversion rate 

was equal among these treatments, the lower SGR in the 176 μM NH3 treatment 

must be attributed to reduced feed intake rather than reduced feed utilization. 

This notion is corroborated by studies on turbot, where it was found that NH3 

reduces growth as a result of reduced feed intake (Person-Le Ruyet et al, 1997). 

Total feed intake and SGR were negatively affected in the fish exposed 

to the highest NH3 concentration: exposure to 1084 μM NH3 resulted in a 58% 

lower total cumulative feed intake and a 57% lower SGR compared to the 

control treatment. Fish exposed to 1084 μM NH3 showed a higher FCR 

compared to the fish in all other treatments. This suggests a high energy 

demand for the maintenance of low plasma NH4
+ concentrations at high water 

ammonia at the cost of growth. 
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4.6 NH3 threshold concentrations 

African catfish chronically exposed to NH3 concentrations as high as 

176 μM (2.5 mg NH3-N/L) did not show major physiological disturbances, 

except for gill morphology. This suggests that the threshold NH3 concentration 

for physiological disturbance is at least 176 μM. However, both feed intake and 

specific growth rates were found to be reduced at much lower NH3 

concentrations: the EC10 for NH3 was found to be 89 μM for feed intake and 

122 μM for SGR. 

The physiological parameters measured in this experiment include 

both primary (plasma cortisol) and secondary (plasma glucose and plasma 

lactate) stress responses. Feed intake and growth rate are tertiary stress 

responses (Wendelaar Bonga, 1997). The observed effects on feed intake and 

growth in the absence of major physiological disturbances are therefore 

surprising, but indicate that the priority for the fish apparently lies in proper 

stress regulation over regulation of growth. Feed intake and growth are thus 

good indicators for negative effects of high water ammonia on African catfish, in 

particular when evaluating chronic suboptimal conditions. The threshold 

concentration for chronic NH3 exposure of African catfish is in our view best 

based on NH3 effects on feed intake and growth. Considering that the lowest 

EC10 value was obtained for feed intake and taking into account the lower limit 

of its 95% confidence interval, the NH3 threshold concentration should 

preferably be set at 24 μM (0.34 mg NH3-N/L). At this NH3 concentration the 

risk of a 10% reduction in feed intake is 5% maximally and growth will not be 

compromised. 

5. Conclusions 

This study clearly demonstrates that plasma levels of NH4
+, cortisol, 

glucose and lactate, as well as plasma osmolality are not indicators of first 

choice for chronic toxicity of high water ammonia in African catfish, Clarias 

gariepinus. We advise for African catfish not to exceed a water NH3 

concentration of 24 μM (0.34 mg NH3-N/L) to reduce the risk of reduced 

growth and feed intake. Below this NH3 threshold concentration less obvious, 

but potentially dangerous disturbances such as deteriorated gill fine structures 

are avoided. 
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Abstract 

The nitrate threshold concentration in rearing water of African catfish 

(Clarias gariepinus) was assessed. Female African catfish with an initial mean 

(SD) weight of 154.3 (7.5) g were exposed to 0.4 (Control), 1.5, 4.2, 9.7 and 27.0 

mM nitrate for 42 days. Mean (SD) plasma concentrations of nitrate increased 

from 71 (29) to 6623 (921) µM at the highest ambient nitrate level. Mean (SD) 

plasma nitrite concentration ranged from 1.2 (0.5) to 7.9 (9.0) µM. Hematocrit, 

plasma concentrations of non-esterified fatty acids (NEFA), cortisol, glucose, 

lactate, osmolality, gill morphology and branchial Na+/K+-ATPase activity were 

not affected. Feed intake and specific growth rate were significantly reduced at 

the highest nitrate concentration. We advise not to exceed a water nitrate 

concentration of 10 mM (140 mg/L NO3
--N) to prevent the risk of reduced 

growth and feed intake in African catfish aquaculture.  
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1. Introduction 

Aquatic organisms risk exposure to toxic levels of nitrate in their 

natural environment due to agricultural application of fertilizers (Bouchard et 

al, 1992) and in intensive aquaculture when recirculation systems (RAS) are 

used (Van Rijn, 2010). Nitrate is toxic to teleosts. Camargo and colleagues 

(2005) suggested, in analogy to the mechanism of nitrite toxicity (Eddy and 

Williams, 1987; Williams et al, 1993), that nitrate toxicity is due to conversion 

of hemoglobin to methemoglobin and the inherent loss of oxygen carrier 

capacity. Uptake of nitrate via the integument from the water by aquatic 

animals is low compared to that of nitrite. In fish this is attributed to an 

apparent low branchial permeability to nitrate (Stormer et al, 1996); similar 

conclusions were reached for gill-breathing crustacean species (Jensen, 1996; 

Cheng and Chen, 2002). Nitrate is therefore considered to be less toxic than 

nitrite. Acute and chronic effects of nitrate exposure were studied in freshwater 

channel catfish (Ictalurus punctatus): the lethal nitrate concentration (96h LC50 

at 26°C) was as high as 105 mM (Colt and Tchobanoglous, 1976). No obvious 

adverse effects were observed during 164 days exposure of channel catfish to 

6.4 mM nitrate (Knepp and Arkin, 1973).  

African catfish (Clarias gariepinus) is commercially farmed in intensive 

RAS in The Netherlands. In RAS ammonia is converted to nitrate in aerobic 

biological filters. Nitrate accumulates in the system (Bovendeur et al, 1987; 

Eding et al, 2006) and fish farmed in RAS may be chronically exposed to nitrate 

levels ranging from 7 to 70 mM (100-1000 mg N/L) depending on RAS design 

and management (Van Rijn, 2010). African catfish are typically exposed to 

nitrate levels around 7 mM (Verreth and Eding, 1993). The effects of this 

chronic nitrate exposure on African catfish physiology are not known. We 

exposed African catfish to increased water nitrate levels for 42 days and the 

nitrate threshold concentration was assessed. 

2. Materials and methods 

2.1 Experimental conditions 

Female African catfish (Clarias gariepinus) were obtained from 

Fleuren-Nooijen BV, Someren, The Netherlands. Fish (n =208) were randomly 

divided over 16 30-L rectangular glass, dark covered, tanks and acclimatized to 

the experimental tanks for 7 days. At the start of the 42 day experiment, the 

overall initial mean (SD) individual weight was 154.3 (7.5) g. The resulting 

mean stocking density was 66.9 kg/m3, well below fish densities found at 
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commercial farms for this size class (100 to 300 kg/m3, Van de Nieuwegiessen 

et al, 2009). 

The treatment of the fish was in accordance with Dutch law concerning 

animal welfare, as tested by the ethical committee for animal experimentation 

of Wageningen UR Livestock Research (number 2011015.c). 

The experiment consisted of 8 duplicated treatments. Treatments were 

assigned randomly to the tanks. Treatment 1 was included to collect blood and 

plasma at the start of the experiment (t = 0). Fish in treatments 2 to 6 were 

exposed to one of five different nitrate concentrations in the water: 0.4 

(control), 1.5, 4.2, 9.7 and 27.0 mM. Fish in treatment 7 (pair-fed) were kept at 

0.4 mM nitrate and pair-fed to the fish kept in 27.0 mM nitrate (treatment 6) to 

discriminate between effects caused by low feed intake and exposure to a high 

nitrate concentration in the water. Fish in treatment 8 (chloride) were exposed 

to high nitrate (22.5 mM) in the presence of sodium-chloride (2.4 g/L) to 

evaluate a potential attenuating effect of chloride (and sodium) on nitrate 

toxicity, similar to nitrite toxicity (Eddy et al, 1983).  

During acclimatization and experimental periods, all tanks were 

supplied with local tap water via a header tank at a flow of 185 L per day. 

Experimental nitrate concentrations were realized by infusion of NaNO3 stock 

solutions prepared in tap water (Table 1), which were pumped into the tanks 

by a peristaltic pump (Watson Marlow 505 S; Rotterdam, The Netherlands) at a 

flow of 4.75 L per day per tank. Each tank was equipped with an air stone to 

guaranty good mixing of the infused stock solution with the tank water. Flow 

rates were monitored daily and adjusted when necessary to reach the desired 

nitrate concentrations. Nitrate concentrations were gradually increased to the 

designated concentrations during the first 4 days of the experimental period. 

Fresh stock solutions (Table 1) were prepared daily during the first 11 days of 

the experimental period and in this period nitrate, nitrite and total ammonia 

(NH4
+-N plus NH3-N) concentrations were monitored daily (Spectroquant cell 

tests for NO3
--N, NO2

--N and NH4
+-N, Merck, Darmstadt, Germany, in a Hach 

Lange DR2800 spectro-photometer, Germany). During the remainder of the 

experimental period fresh stock solutions were prepared weekly and nitrate, 

nitrite (Table 1) and total ammonia concentrations (0.33- 0.57 mM) monitored 

twice per week. Water temperature (25.4-25.6°C), pH (Table 1) and dissolved 

oxygen concentrations (0.27-0.39 mM) were monitored daily prior to feeding in 

all tanks (Hach Lange HQ 40 multimeter, Germany) throughout the entire 

experiment.  
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Treatment 
  

NaNO3 
stock 

NaCl  
stock 

Pred. 
tank  

[NO3
-] 

Pred. 
tank  
[Na+] 

Pred. 
tank  
[Cl-] 

Pred. 
tank 

salinity 
[NO3-N] [NO3-N] [NO2-N] pH 

range 
  

(g/L) (g/L) (mM) (mM) (mM) (g/L) (mg/L) (mM) (µM) 

2-control 0 0 0 0 0 0 
5.5 

(0.31) 
0.39 

(0.02) 
4.6 (1.6) 

7.30-
8.06 

3 3.5 0 1.07 1.07 0 0.02 
20.5 

(0.51) 
1.46 

(0.04) 
8.5 (2.9) 

7.35-
7.75 

4 10.6 0 3.21 3.21 0 0.05 
59.0 

(8.86) 
4.21 

(0.63) 
7.0 (3.6) 

7.36-
7.92 

5 31.9 0 9.64 9.64 0 0.14 
135.8 
(10.2) 

9.69 
(0.73) 

7.3 (2.6) 
7.35-
7.76 

6 95.6 0 28.9 28.9 0 0.41 
378.8 
(32.8) 

27.04 
(2.34) 

10.2 
(1.9) 

7.40-
7.89 

7-pair-fed 0 0 0 0 0 0 
5.6 

(0.23) 
0.40 

(0.02) 
7.1 (3.3) 

7.39-
7.69 

8-chloride 95.6 77.8 28.9 63.2 34.2 2.4 
315.0 
(25.3) 

22.49 
(1.80) 

3.5 (1.3) 
7.55-
7.99 

Table 1. Composition of the treatment specific stock solutions, the predicteda nitrate, sodium and 
chloride concentrations and the mean (SD) values for measured nitrate and nitrite concentrations 
in the tanks for all treatments.  

a Based on equal flow rates per tank of 4.75 L/d for the stock solutions and 185 L/day for the tap water flow. 

2.2 Blood and plasma sampling 

One day before exposure to nitrate started (day 0), fish in treatment 1 

were sampled. After 42 days exposure to nitrate, the fish from the seven 

remaining treatments were sampled (13 fish per tank). Fish were rapidly 

netted and anaesthetized in 0.1% (v/v) 2-phenoxyethanol (Sigma, St. Louis, 

USA). Within 2 min, blood (2 x 1.0 mL) was taken by puncture of the caudal 

vessels by the use of a heparinized syringe fitted with a 25-gauge needle. One 

50 µl aliquot was used for the hematocrit measurement, the remainder was 

immediately centrifuged for 10 min (14,000 g, 4°C) and the plasma so obtained 

stored at -20°C until further analyses. 

2.3 Plasma nitrate and nitrite concentration 

NOx (the sum of NO2
- and NO3

-) was measured with the nitrate/nitrite 

colorimetric assay kit from Cayman Chemical Company (Ann Arbor, Michigan, 

USA). Prior to measurement, plasma samples were ultra-filtrated using 

Millipore Ultra-free MC centrifugal filter device (0.1 μm pore size) to reduce 

background absorbance due to the presence of hemoglobin and improve color 

formation using the Griess reagents. Samples of 80 µL (in duplicate) were 

diluted in the assay buffer and then incubated for 3 h at room temperature with 

10 µL of Enzyme Co-factor mixture and 10 µL of Nitrate reductase mixture. Fifty 
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µL of the first Griess reagent (R1) followed by the second Griess reagent (R2) 

were added and absorbance was read at 530 nm using a Wallac 1420 VICTOR2 

counter (Turku, Finland). The nitrite (NO2
-) fraction within NOx was measured 

using 100 µL of undiluted plasma together with the Griess reagents 

combination. The NO3
- fraction was calculated as the difference between the 

plasma NOx and the plasma NO2
- concentrations.  

2.4 Plasma concentrations of cortisol, glucose, lactate, plasma osmolality and 

branchial Na+/K+-ATPase activity 

Plasma concentration of cortisol was determined by 

radioimmunoassay as described in detail by Metz and colleagues (2005). 

Plasma osmolality was measured using a cryoscopic osmometer (Osmomat 030, 

Gonotec, Germany). Plasma concentrations of glucose, lactate were measured 

with commercially available enzymatic kits adapted to 96 wells plates as 

described recently (Schram et al, 2010). Branchial Na+/K+-ATPase activity was 

measured as described by Metz and colleagues (2003). 

2.5 Plasma NEFA concentration  

Plasma non-esterified fatty acid (NEFA) concentration was measured 

with a commercial kit (Wako Chemicals GmbH, Neuss, Germany), with a 

protocol adapted to a 96 wells microplate. Four μL of sample or standard (0, 

0.25, 0.50, 0.75 and 1 mM) were mixed with 225 μL of first reagent (Acyl-CoA 

synthetase (ACS), Coenzyme A (CoA) and ATP) and incubated 3 min at 37°C and 

absorbance was measured at 595 nm (sample blank measurement), followed by 

addition of 75 μL of the second reagent containing Acyl-CoA oxidase (ACOD), 

peroxidase (POD), Methyl-Ethyl-Hydroxymethyl-Alanine (MEHA); the plate was 

incubated for another 15 min and final absorbance read at 595 nm.  

2.6 Gill morphology 

From each sampled fish the second gill arch was removed immediately 

after blood sampling and placed overnight in Bouin’s fixative (75 volumes 

saturated picric acid, 25 volumes saturated formaldehyde, and 5 volumes acetic 

acid) and embedded in paraffin. Gill sections were made to include the trailing 

edge of the filament where the chloride cells reside. Gill sections were immune-

stained according to Dang and colleagues (2000) as described in detail for 

African catfish (Schram et al, 2010). 
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2.7 Blood hematocrit levels 

Immediately after blood puncture, subsamples were drawn into glass 

capillaries and centrifuged (13,600 g; 3 min) to assess hematocrit values. 

Results were rounded to the closest 0.5%. 

2.8 Specific growth rate, feed intake and feed conversion ratio 

On day 0 and day 42, the fish in each tank were individually weighed 

(Mettler PM 34 Delta range) to the nearest 1 g, to calculate the specific growth 

rate (SGR) as follows: 

t
WWSGR t

100
))ln()(ln( 0 

 
 

Where SGR = specific growth rate (% per day), Wt = mean weight at day 42 (g), 

W0 = mean weight at day 0 (g) and t = number of days. 

Floating feed (Catfish type Me-3; Skretting, Boxmeer, The Netherlands) 

with 49% crude protein and 11% crude lipids was given twice daily at 9:00 and 

15:00 until apparent satiation (no more feed taken for at least five min 

following administration of the feed). Feed loads per tank were recorded daily. 

All uneaten pellets were collected from each tank 1 h after each of the two daily 

feeding sessions. Feed loss per tank was calculated as the total number of 

uneaten feed pellets multiplied by 0.0966 g per pellet, the average weight of a 

pellet, determined by weighing 100 feed pellets. Daily feed intake per tank 

resulted from the difference between daily feed load and daily feed loss. Daily 

feed intake per tank was divided by the number of fish in the tank to calculate 

the daily feed intake per fish in each tank. For each tank the total feed intake 

per fish (TFI) was determined by summation of daily feed intake per fish in 

each tank. Total feed intake per fish and biomass increase per fish were used to 

calculate feed conversion ratio (FCR) as follows: 

)( 0WW

TFI
FCR

t 
  

Where FCR = feed conversion ratio (g/g), TFI = total feed intake (g/fish), Wt = 

mean individual weight at day 42 (g) and W0 = mean individual weight at day 0 

(g).  

2.9 Statistics 

Physiological parameters. Physiological parameters are expressed as mean (SD) 

of the individual measurements per treatment. For each treatment, 26 fishes 
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had been sampled; in some instances not all samples were analyzed because of 

insufficient plasma volume. When necessary, data were log-transformed to 

obtain residuals that were approximately normally distributed and to obtain 

homogeneity of variance of residuals across treatment levels. Mean values for 

physiological parameters were tested for differences among the treatments 

using linear mixed models (REML) with treatments as fixed effects and tank as 

a random effect (F-tests with Kenward-Roger approximation to the residual 

degrees of freedom (Kenward and Rogers, 1997)). Statistical analyses were 

performed in SAS 9.2 (SAS Institute Inc., Cary, North Carolina, USA). Only when 

significant treatment effects were detected, a least significance difference (LSD) 

post-hoc analysis was used to estimate the level of significance between mean 

values. For both REML and LSD analysis the fiducial limit was set at 5%.  

Plasma nitrate concentrations and plasma nitrate to water nitrate 

ratios were related to water nitrate concentrations by linear regression 

analyses with water nitrate concentration as fixed effect and tank as a random 

effect. Plasma nitrite concentrations were related to water nitrite and plasma 

nitrate concentrations by linear regression analyses with either water nitrite or 

plasma nitrate concentration as fixed effect and tank as a random effect. Plasma 

chloride concentrations were related to plasma nitrate concentrations by linear 

regression analysis with plasma nitrate concentration as fixed effect and tank as 

a random effect. In all regression analyses F-tests with Kenward-Roger 

approximation to the residual degrees of freedom were used (Kenward and 

Rogers, 1997). The pair-fed and sodium chloride groups were not considered in 

regression analyses. 

Feed intake and growth. Initial and final individual weight, total feed intake per 

fish (TFI), specific growth rate (SGR) and feed conversion ratio (FCR) are 

presented as means per treatment (N = 2). Mean values per treatment were 

tested for significant differences among the treatments by one-way ANOVA in 

SAS 9.2 (SAS Institute Inc., Cary, North Carolina, USA). Only in case significant 

treatment effects were detected, a least significance difference (LSD) post-hoc 

analysis was used to estimate the level of significance between mean values. 

For both ANOVA and LSD analysis the fiducial limit was set at 5%. 

Concentration-effect curves and NOEC. Nitrate concentration-effect curves were 

fitted for specific growth rate (SGR) and total feed intake per fish (TFI) using a 

log-logistic model (Seefeldt et al, 1995). As a blank could not be included, the 

effects are expressed as absolute values. Curve-fitting was carried out with the 

Marquadt and Levenberg algorithm (Moré, 1978) as provided in the PRISM 4.00 

software package (Graphpad Software, Inc.). The 10% effect concentrations 
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(EC10) and their 95% confidence limits were calculated (Miller and Miller, 

2000). No observed effect concentrations (NOEC) were determined for SGR and 

TFI as the highest nitrate concentrations in the experiment at which no 

significant difference with the control treatment were observed. 

3. Results 

3.1 Plasma nitrate and nitrite concentrations. 

Nitrate concentrations in the water had a strong effect on plasma 

nitrate (NO3
-) concentrations. Plasma nitrate concentrations were significantly 

different among all treatments (Table 2) and found to increase linearly with 

increasing nitrate concentrations in the water (Table 3). Pair-feeding nor 

(sodium) chloride addition to the water affected plasma nitrate levels (Table 2). 

Plasma nitrate to water nitrate ratios ranged from 0.15 to 0.25 among the 

nitrate treatments. The highest value (0.31) was observed in the high nitrate 

exposure level (22.5 mM) combined with sodium chloride. However, 

treatments effects on the plasma to water nitrate ratios were not detected 

(Tables 2 and 3). Plasma nitrite (NO2
-) differed among treatments (Table 2) but 

at 8 µM the highest value observed is still low and only slightly higher than 

control values (3.4 µM).  

The increase in plasma nitrite could not be attributed to differences in 

water nitrite concentrations (Table 3). Instead, the plasma nitrite concentration 

was found to increase linearly with increasing water nitrate and plasma nitrate 

concentrations (Table 3).  

3.2 Plasma chloride and plasma osmolality 

 Significantly different plasma chloride concentrations were detected 

among treatments (Table 2). Plasma chloride concentrations were found to 

decrease linearly with increasing plasma nitrate concentration (Table 3). 

Plasma osmolality was unaffected by the treatments (Table 2).  

3.3 Hematocrit, plasma cortisol, glucose, lactate and NEFA and branchial Na+/K+-

ATPase activity. 

As shown in Table 4, no significant differences in plasma 

concentrations of cortisol, glucose, lactate and NEFA, branchial Na+/K+-ATPase 

activity and hematocrit were observed. All values were within normal ranges 

previously reported for African catfish, Clarias gariepinus (Schram et al, 2010). 
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Table 2. Mean (SD) values at the start (t =0) and per treatment for the end (t = 42 days) of the 
experiment for plasma NO3- , plasma NO3- to water NO3- ratio, plasma NO2-, plasma Cl- , branchial 
Na+/K+-ATPase activity and plasma osmolality. Mean values with different superscripts are 
significantly different (REML, P values as shown). SD = standard deviation of mean values per 
treatment, n as indicated in the table. t = 0 values were not considered in the statistical analysis. 
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Response variable Explanatory variable 
Regression coefficient Intercept 

Estimate P value* Estimate P-value 
Plasma nitrate (mM) Water nitrate (mM) 0.2442 < 0.0001 -0.1857 0.52 
Plasma chloride (mM) Plasma nitrate (mM) -3.601 0.0005 108.06 <0.0001 
Plasma nitrate to 
water nitrate ratio 

Water nitrate 0.0026 0.14 0.171 <0.0001 

Plasma nitrite (µM) Water nitrite (µM) 0.152 0.56 2.51 0.25 
Plasma nitrite (µM) Plasma nitrate (µM) 0.000624 0.0075 2.42 0.0020 
Plasma nitrite (µM) Water nitrate (µM) 0.000130 0.026 2.48 0.0037 

*) equals model P value 

Table 3. Results of linear regression analyses with tanks as random effect.  
 

Treatment 
Water NO3 Cortisol 

n 
Glucose 

n 
Lactate 

n 
NEFA 

n 
Hematocrit 

n 
(mM) (nM) (mM) (mM) (mM) (%) 

1-t = 0 - 15.2 (25.2) 22 3.28 (1.1) 26 4.79 (1.0) 26 0.17 (0.07) 21 - 
 

2-control 0.39 9.6 (6.2) 22 3.54 (1.0) 26 4.97 (1.2) 26 0.17 (0.11) 18 32.1 (4.3) 24 

3 1.46 14.2 (9.8) 24 3.72 (0.9) 26 5.02 (1.1) 26 0.22 (0.11) 18 29.0 (5.1) 26 

4 4.21 20.4 (16.3) 25 2.89 (0.9) 26 4.84 (0.9) 26 0.23 (0.14) 20 27.0 (3.9) 25 

5 9.69 10.8 (12.8) 23 3.00 (0.4) 26 4.96 (0.9) 26 0.15 (0.07) 19 28.8 (5.3) 26 

6 27.04 19.5 (16.7) 23 2.92 (0.5) 23 5.51 (1.5) 23 0.22 (0.13) 16 32.4 (5.4) 23 

7-pair-fed 0.4 17.6 (11.0) 23 3.36 (0.8) 20 4.10 (0.7) 23 0.23 (0.12) 22 25.7 (4.8) 22 

8-chloride 22.49 20.3 (12.7) 25 2.58 (0.4) 25 5.61 (1.2) 25 0.24 (0.11) 25 31.7 (4.5) 23 

P-value 
 

0.71 
 

0.43 
 

0.3 
 

0.54 
 

0.08 
 

Table 4. Mean (SD) values at the start (t =0) and per treatment for the end (t = 42 days) of the 
experiment for plasma cortisol, plasma glucose, plasma lactate and NEFA concentrations and 
hematocrit. Mean values with different superscripts are significantly different (REML, P values as 
shown). SD = standard deviation of mean values per treatment, n as indicated in the table. t = 0 
values were not considered in the statistical analysis. 

Treatment 
Water NO3 

(mM) 
Initial weight 

(g) 
Final weight 

(g) 
TFI       

(g/fish) 
SGR   

(%BW/d) 
FCR 

Survival 
(%) 

1-t = 0 -  152.6 (3.1)  - - - - - 

2-Control 0.39 153.6 (9.0) 495.5 (5.6)a 262.4 (0.6)a 2.93 (0.18)a 0.77 (0.03)a 100 (0) 

3 1.46 155.1 (12.4) 480.3 (12.8)a 251.4 (4.4)a 2.83 (0.13)a 0.77 (0.01)ab 100 (0) 

4 4.21 157.2 (5.7) 483.3 (28.6)a 252.9 (17.9)a 2.81 (0.06)a 0.78 (0.00)ab 100 (0) 

5 9.69 151.6 (7.2) 464.7 (48.9)a 246.9 (23.6)a 2.80 (0.14)a 0.79 (0.03)ab 100 (0) 

6 27.04 149.4 (9.6) 303.5 (91.7)b 127.3 (60.8)b 1.72 (0.60)b 0.84 (0.05)b 88 (16) 

7-pair-fed 0.4 155.0 (5.4) 330.9 (16.5)b 136.0 (12.9)b 1.90 (0.21)b 0.77 (0.02)ab 88 (16) 

8-chloride 22.49 158.3 (13.4) 278.9 (31.6)b 111.4 (19.5)b 1.41 (0.07)b 0.92 (0.02)c 100 (0) 

P-value   0.96 0.004 0.002 0.002 0.009 0.58 

Table 5. Mean (SD) values per treatment (N = 2) for initial weight, final weight, total feed intake, 
specific growth rate (SGR), feed conversion ratio (FCR) and survival rate. Mean values with 
different superscripts are significantly different (one-way ANOVA, P values as shown). SD = 
standard deviation of mean values per treatment. 
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3.4 Gill morphology. 

Gill morphology, presented for controls (0.39 mM NO3
-), pair-fed (0.40 

mM NO3
-), highest (27.0 mM NO3

-) and chloride (22.5 mM NO3
-), was not 

affected by nitrate exposure (Fig. 1). The number of chloride cells, nor their 

location within the gills were affected (data not shown). 

Fig. 1. Histology of gill epithelium immunohistochemically stained for Na+/K+ ATPase-rich cells 
(chloride cells) of the control (3A), pair fed (3B), 27.0 mM NO3 (3C) and 22.5 mM NO3 in addition 
with NaCl (3D) treatment groups. No effects on the gill’s morphology with increasing water nitrate 
level were observed. Legend: ile = inter-lamellar epithelium, le = lamellar epithelium, ils = inter-
lamellar space, cc = chloride cell, gf = gill filament, gl = gill lamellae. 

3.5 Feed intake, specific growth rate, feed conversion rate and mortality.  

Four fish died during the experiment out of a total of 208 fish. Death 

did not result in significantly different survival rates among treatments (Table 

5). Total feed intake per fish differed among treatments (Table 5). At the 

highest nitrate level (27.0 mM) and the high nitrate exposure level (22.5 mM) 

combined with sodium chloride, the total feed intake per fish was reduced by 
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over 50% compared to the groups exposed to nitrate levels of 9.7 mM or lower. 

The differences in feed intake among treatments became apparent already 1 

day after the highest nitrate exposure concentration had been reached (Fig. 2).  

Specific growth rate (SGR) differed among treatments (Table 5). At the 

highest nitrate exposure level (27.0 mM), in the pair-fed group and at the high 

nitrate exposure level (22.5 mM) combined with sodium chloride, SGR was 

significantly reduced by at least 35% compared to the groups exposed to nitrate 

levels of 9.7 mM and lower. The highest value for feed conversion ratio was 

seen in the 22.5 mM-NO3
- with sodium-chloride group (0.92); the FCR of 0.84 at 

the highest nitrate exposure level (27.0 mM) was not different from the values 

calculated for pair-fed controls.  

3.6 EC10 and NOEC for total feed intake and SGR 

The concentration-effect curves for TFI and SGR in relation to the water 

NO3 concentration (Figs. 3A and 3B), yield and EC10 for NO3
- of 22 mM (312 

mg/L NO3
--N), with a 95% confidence interval from 20 to 25 mM when read 

against TFI. For SGR, a very similar EC10 for NO3
- of 23 mM (321 mg/L NO3

--N), 

with a 95% confidence interval from 21 to 26 mM was calculated. For both SGR 

and TFI the highest test concentration at which no significant difference with 

the lowest nitrate exposure concentration was observed (NOEC) was 9.7 mM. 

 

Fig. 2. Mean (N=2) cumulative feed intake per fish during the experimental nitrate exposure. The 
arrow indicates the first day at which all treatments reached their designated nitrate 
concentrations. 
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Fig 3. Concentration-effect curves for Total feed intake (TFI) (A) and specific growth rate (SGR) (B) 
in relation to the water NO3 concentration( [NO3], mM). TFI = 253.4-253.4/(1+10((1.432-log[NO3] )/0.0869) ) 
and SGR = 2.84 – 2.84/(1+10((1.450-log[NO3]/0.0936) ). Pair-fed and chloride treatments were not included. 

4. Discussion 

4.1 Plasma nitrate and nitrite concentrations 

In Clarias gariepinus plasma nitrate concentrations increase with 

increasing nitrate concentrations in the water. Nitrate transport mechanisms 

have not been established in fish to date. It has been suggested that nitrate is 

only passively moving across the gills of rainbow trout, Oncorhynchus mykiss 

(Stormer et al, 1996). In that study on trout, an ambient nitrate concentration of 

1 mM resulted in a 5 times lower plasma concentration (0.2 mM). We observed 

very similar ambient to plasma nitrate ratio in our African catfish study, 

suggesting similar nitrate handling in both species. These low molar ratios 

between plasma nitrate and ambient nitrate suggest that that the integument 

forms a significant barrier to waterborne nitrate.  

Nitrate has, in vitro, low, millimolar, affinity for branchial chloride 

carriers (Stormer et al, 1996). This is confirmed in vivo in our study as addition 

of (sodium) chloride to the water (next to high nitrate) did not affect plasma 

nitrate levels nor nitrate toxicity in African catfish.  

As branchial nitrate permeability appears to be low, other nitrate 

uptake routes also need to be considered. Gastro-intestinal nitrate exposure via 

water ingestion may become significant when the fish starts drinking or ingests 

water during feeding. Intestinal uptake of nitrate has not yet been examined in 

fish but for nitrite this pathway is well documented in European flounder, 

Platichthys flesus (Grosell and Jensen 2000). Intestinal uptake may explain why 

turbot, a marine and therefore drinking species, is relatively sensitive to 

waterborne nitrate (Van Bussel et al, 2012).  
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From our studies we cannot discriminate a contribution of ingested 

nitrate to nitrate accumulation in the plasma but the reduced feed intake we 

observed in our fish exposed to high nitrate may be a behavioral adaptation 

aimed at reducing nitrate exposure via ingested water. Fish moisten dry feed 

pellets with water and this may contribute to intake of nitrate. Increased ionic 

levels in fresh water could further induce drinking (Hirano, 1974). It should be 

noted that the addition of the highest concentration of nitrate in this 

experiment was less than 30 mM NaNO3, equivalent to an increase in water 

osmolality of about 60 mOsmol/kg. In media of such low osmolality 

passive/diffusional water influx may be significant and therefore drinking an 

unwanted behavior. Independently of what the route of entry is, apparently 

millimolar plasma concentrations of nitrate are tolerated by African catfish. 

This is in accordance with the consensus on the robustness of this fish in 

aquaculture. 

4.2 Plasma osmolality, plasma chloride and gill morphology and Na+/K+-ATPase 

activity  

High levels of nitrate in the water did not affect plasma osmolality in 

this catfish. Since Cl- (with Na+) is a major determinant of plasma osmolality, the 

hypochloremia (86.5 (9.7) mM vs. 108.7 (6.8) mM in controls) observed at the 

highest ambient nitrate levels could have induced a 20 mOsmol/kg decrease in 

osmolality of the plasma compartment. The high plasma nitrate levels (> 6 mM) 

may have compensated, at least partly, hypochloremic effects on plasma 

osmolality. Whereas nitrate transport is well known in plants and yeast (Orsel 

et al, 2002; Machín et al, 2004), to date, no literature seems to exist on nitrate 

transport proper in animal tissues. Nitrate may interfere and reduce chloride 

reabsorption in the distal mammalian nephron (Kahn et al, 1975), but specific 

nitrate transporter mechanisms have, to the best of our knowledge, not been 

demonstrated in animal osmoregulatory organs. The hypochloremia seen at the 

highest ambient nitrate levels and the coinciding millimolar plasma nitrate 

levels do suggest that plasma nitrate interferes with chloride handling. In a 

freshwater fish, branchial and intestinal chloride uptake from water and food 

and renal reabsorption are key to chloride homeostasis (Fuentes et al, 1997) 

and these are the sites where nitrate could interfere to explain the 

hypochloremia.  

Nitrate exposure did not affect branchial Na+/K+-ATPase activity. The 

enzymatic activities measured in this experiment are somewhat lower than the 

values reported recently for the same species (Schram et al, 2010), which we 
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attribute to salinity differences between the current (0.4-2.4 g/L) and the 

previous ammonia study (4 g/L).  

Apparently a significant hypernitratemia does not alter the activity if 

this enzyme. This corresponds to our observation that the number of Na+/K+-

ATPase rich chloride cells was not affected by nitrate exposure. Nitrate 

exposure also did not cause morphological changes nor anomalies of the 

branchial epithelium. Morphological adaptations to reduce the permeability of 

the gills were observed when this fish species was exposed to increasing 

ambient ammonia concentrations (Schram et al, 2010). The results jointly taken 

indicate that high levels of nitrate do not affect permeability of the gills, neither 

to water or ionic species central to osmotic homeostasis, nor to nitrate itself 

(Stormer et al, 1996) as we conclude from the insignificant increase in molar 

ratios for nitrate in water and plasma; clearly, nitrate is not very toxic for this 

fish species.  

4.3 Stress physiology 

None of the stress and energy metabolite parameters (plasma cortisol, 

glucose, lactate and NEFA) were affected by nitrate. All parameters showed 

values within the range considered normal and reported before for the same 

species (Schram et al, 2010). Even the highest nitrate exposure concentration 

apparently did not impose distress.  

 4.4 Feeding  

During the first 4 days of the experiment when nitrate concentrations 

were building up, feed intake was similar among all treatments. On day 5 

however, when maximal nitrate levels had been reached , significant differences 

in feed intake showed up more or less instantaneously at the highest nitrate 

levels (22.5 and 27.0 mM). Feed intake instantly drops above 10 millimolar 

nitrate in the water; apparently a threshold is surpassed where appetite is lost. 

We conclude from this that nitrate is apparently ‘sensed’ by this fish. The effect 

of high ambient nitrate on feed intake appears direct and persistent, as feed 

intake dropped within 24 h and remained low for up to 42 days.  

A pair-fed group was introduced to discriminate effects of nitrate 

exposure from potential effects of reduced feed intake. No significant 

differences were observed in physiological parameters for any treatment. 

However, feed intake, feed conversion ratio and specific growth rate were equal 

for catfish exposed to the highest nitrate level and their pair-fed controls. We 

conclude from this observation that high nitrate exposure must inflict upon 

appetite or feeding behavior. The highest feed conversion ratio (0.92) seen in 
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the group exposed to high nitrate concentration (22.5 mM) together with 

sodium chloride suggests that in these fish osmoregulatory activity imposes an 

extra energy demand. 

4.5 Nitrate toxicity  

Camargo and colleagues (2005) suggested that conversion of 

hemoglobin to methemoglobin and loss of oxygen carrying capacity is at the 

basis of nitrate toxicity, similar to the well-documented mechanism of nitrite 

toxicity (Eddy and Williams, 1987; Williams et al, 1993). Direct evidence for 

this mode of action for nitrate toxicity in fish is limited to one paper on rainbow 

trout (Grabda et al, 1974) and, for a similar action on hemocyanin in a penaeid 

shrimp (Cheng and Chen, 2002). In contrast, elevated methemoglobin was not 

observed in nitrate exposed rainbow trout in a study by Stormer and colleagues 

(1996). According to Bodansky (1951), nitrate is first reduced to nitrite before 

oxidizing hemoglobin to methaemoglobin. Unfortunately, we failed to 

determine methemoglobin in our nitrate-exposed catfish. However, the findings 

of Stormer and colleagues (1996), Bodansky (1951) together with the plasma 

nitrate and hematocrit data from our study do suggest though that other 

mechanisms for nitrate toxicity than direct hemoglobin oxidation need to be 

considered. Plasma nitrate levels of 7mM did not cause severe adverse effects in 

African catfish, while very similar plasma nitrite levels are reported to be lethal 

in fish (5 to 9 mM in channel catfish (Lewis and Morris, 1986), 8 mM in 

salmonids (Eddy et al, 1983). We conclude from this that it is unlikely that 

nitrate significantly converted hemoglobin to methaemoglobin. This notion is 

supported by our observation that nitrate exposure did not affect hematocrit 

levels. Decreased hematocrit was observed in nitrite exposed rainbow trout 

(Stormer et al, 1996) and common carp (Cyprinus carpio) (Jensen, 1990), an 

effect attributed to increased red blood cell turnover, due to nitrite-induced 

methemoglobinemia.  

The slightly elevated plasma nitrite we observed in African catfish was 

related to plasma nitrate rather than water nitrite. Elevated plasma nitrite 

could originate from plasma nitrate when cells reduce nitrate to nitrite 

(Lundberg et al, 2008) which then appears in the plasma compartment, but 

mechanisms for such route have not been documented in fish to date (Sandvik 

et al, 2011). Our results indicate that nitrate-nitrite conversion could be present 

in African catfish. It is however not likely that nitrite induced 

methemoglobinemia is at the basis of treatment effects rather than the nitrate 

exposure. The presence of methemoglobin reductase inside the red blood cells 

(Cameron, 1971) would keep pace with any slightly elevated hemoglobin 
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oxidation rate caused by this slightly elevated plasma nitrite, maintaining 

methemoglobin low.  

4.6 Nitrate threshold concentrations 

African catfish chronically exposed to 27.0 mM ambient nitrate did not 

show major physiological disturbances. The threshold concentration for 

chronic nitrate exposure of African catfish is in our view therefore best based 

on nitrate effects on feed intake and growth. As only the two highest tested 

concentrations (22.5 and 27.0 mM) induced a significant effect, we propose to 

use the highest test concentration that showed no significant effect (no 

observed effect concentration, NOEC) as a safe threshold concentration for 

nitrate (9.7 mM, 140 mg/L NO3
--N) and not the calculated EC10.  

5. Conclusions 

Nitrate may be considered an end product and stable non-toxic form of 

nitrogenous waste, and this notion fits in with millimolar plasma levels of 

nitrate. Yet, ambient levels above 10 millimolar nitrate affected food intake and 

reduced growth, and rather instantly. We therefore advise for African catfish, 

Clarias gariepinus not to exceed a water nitrate concentration of 10 mM (140 

mg/L NO3
--N). Below this nitrate concentration physiological and growth 

disturbances are avoided. We further advise to avoid incidental high nitrate as 

African catfish may immediately stop feed intake. Mildly elevated salinity (by 

sodium-chloride addition) does not reduce effects of high nitrate exposure in 

African catfish. 
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Abstract 

 The nitrite threshold concentration in rearing water of African catfish 

(Clarias gariepinus) was assessed. African catfish with an initial mean (SD) 

weight of 219.7 (57.8) g were exposed to a increasing range of water nitrite 

from 6 μM (Control) to 928 μM nitrite for 28 days. Mean (SD) plasma nitrite 

concentrations increased from 5.0 (3.6) to 32.5 (12.6) μM at 928 μM ambient 

nitrite. The increase in nitrite was accompanied by gradual increase in plasma 

nitrate from 41.6 (28.4) μM to 420.2 (106.4) μM. Hematocrit, hemoglobin, 

methemoglobin, plasma concentrations of cortisol, glucose, lactate, osmolality, 

gill morphology and branchial Na+/K+-ATPase activity were not affected. Feed 

intake, final weight, SGR, FCR and mortality were not affected. We advise not to 

exceed a water nitrite concentration of 43 μM (0.6 mg/L NO2
--N) to prevent the 

risk of reduced growth and feed intake in African catfish aquaculture.  
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1. Introduction 

 The aquaculture industry has been expanding rapidly over the past 

four decades (FAO, 2012). In (intensive) recirculation systems (RAS), water is 

treated to allow the reuse of over 90% of the rearing water (Bovendeur et al, 

1987; Eding et al, 2006). In RAS fish risk exposure to toxic levels of nitrite. 

Nitrogenous wastes in RAS are managed by nitrification (biological oxidation of 

ammonia to nitrate) and denitrification (biological reduction of nitrate to 

nitrogen gas) (Bovendeur et al, 1987; Eding et al, 2006; Van Rijn, 2010). Both 

processes can cause nitrite accumulation in the rearing water (Van Rijn and 

Rivera, 1990).  

 Nitrite is very toxic to organisms, as it converts hemoglobin (Hb) into 

methemoglobin (MethHb) that does not carry oxygen (Kiese, 1974). At high 

external nitrite levels, fish reduce their overall activity to reduce their oxygen 

requirement; this goes however with the cost of impaired growth and a series 

of vital functions (reviewed by Lewis and Morris 1986). In freshwater, nitrite 

enters the organism primarily via the chloride cells in the gills (Bath and Eddy 

1980). Nitrite has an affinity for this branchial Cl-/HCO3
- exchanger and 

therefore can compete with the normal Cl- uptake mechanism. This can lead to 

(partial) shift from Cl- uptake to NO2
- uptake when nitrite is present at high 

concentrations in the environment (Jensen, 2003). Therefore, fish with high 

branchial chloride uptake rates are more sensitive to nitrite toxicity than those 

with low uptake rates (Williams and Eddy, 1986). This pertains in particular to 

freshwater species, where active branchial uptake is the main route of entry of 

anions (Jensen, 2003). Elevated chloride levels in the water is known to 

alleviate nitrite toxicity, due to competitive effects on branchial nitrite uptake 

(Crawford and Allen, 1977). This protective effect is not uniform between 

species (reviewed by Lewis and Morris, 1986).  

 African catfish (Clarias gariepinus) is commercially farmed in intensive 

RAS in The Netherlands (Van Duijn et al, 2010). The global aquaculture 

production of African catfish has been increasing rapidly since 2000. In 2011 

194.000 tons were farmed globally (FAO, 2011). The effects of chronic nitrite 

exposure on African catfish physiology and food intake are not known. Most of 

the studies on nitrite toxicity determined the median lethal dose, LD50 for 

several fish species with exposure times up to 120 h. Chronic exposure studies 

are scarce and mostly limited to purely toxicological effects, with no attention 

to effects on growth parameters, of interest to farmers (reviewed by Lewis and 

Morris, 1986; Kroupova et al, 2005). Hilmy and coworkers (1987) exposed 

African catfish for 6 months to 228 μM of nitrite (1/10th of their 96 median 

tolerance limit). They observed a decrease in erythrocytes counts, haemoglobin 
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content and production of methemoglobin. In our experimental design, we 

exposed African catfish to a range of nitrite concentrations that allowed us to 

see subtle but yet important effect on parameters of interest for fish farmers, 

without causing mortalities nor serious toxic effect. 

 For channel catfish, Ictalurus punctatus, the lowest concentration 

nitrite leading to growth suppression after 31 days was 115 μM (44% of the 

minimum concentration to induce mortality) (Colt et al, 1981). The minimum 

concentration causing mortality for this species is about half of the 96 h LC50 

(Bowser et al, 1983). Therefore the minimum ambient concentration to of 

nitrite leading to detectable growth was set up at about one-fifth of the 96 h 

LC50 (Lewis and Morris, 1986). This information was taken into account when 

designing the experimental concentrations range. We exposed African catfish to 

increasing water nitrite concentrations (6 (Control), 111, 280, 459 and 928 μM) 

for 28 days to assess the nitrite threshold concentration for physiology, growth 

and food intake. In addition, we exposed two aquaria to high ambient nitrite 

concentrations (921 μM) in the addition on sodium-chloride (350 mg/L; 6 mM) 

to investigate the potential attenuating effect of chloride on nitrite toxicity. 

2. Materials and methods 

2.1 Experimental conditions 

 African catfish (Clarias gariepinus) were obtained from Fleuren-

Nooijen BV, Someren, The Netherlands. The treatment of the fish in the 

laboratory was in accordance with Dutch law concerning animal welfare, as 

tested and approved by the ethical committee for animal experimentation of 

Wageningen UR Livestock Research. 

 Fish (n =192) were randomly divided over sixteen 30-L rectangular 

glass (12 fish per tank), dark covered tanks and acclimatized to the 

experimental tanks for 15 days. During this acclimatization period, some fish 

with skin damage (due to aggressive behavior; n=6) were removed, resulting in 

some variation in number of fish per tank (10 to 12). After this period of 15 

days, the behavior of the fish had stabilized, and nitrite exposure commenced. 

At the start of the 28 days experiment, the overall initial mean (SD) weight was 

219.7 (57.8) g. The mean stocking density was 84.7 kg/m3, a value below 

densities practiced at commercial farms for this size class (100 to 300 kg/m3, 

Van de Nieuwegiessen, et al, 2009). 

 The experiment consisted of 8 treatments, in duplicate. Treatments 

were assigned randomly to the 16 tanks. Treatment 1 was included to collect 

blood at the start of the experiment (t = 0). Fish in treatments 3 to 7 were 
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exposed to one of 5 different nitrite concentrations in the water: 6, 111, 280, 

459 and 928 μM. Fish in treatment 2 (pair-fed) were kept at control nitrite 

levels and pair-fed to the fish kept at 928 μM nitrite (treatment 7) to 

discriminate between effects caused by low feed intake due to high nitrite in the 

water. Fish in treatment 8 (chloride) were exposed to high nitrite (921 μM) in 

the presence of sodium-chloride (350 mg/L; 6 mM) to evaluate a potential 

attenuating effect of chloride (and sodium) on nitrite toxicity (Eddy et al, 1983; 

Stormer et al, 1996; reviewed by Lewis and Morris 1986 and Kroupova et al, 

2005). During acclimatization and experimental periods, all tanks were 

supplied with local tap water via a header tank at a flow of 185 L per day 

(chloride concentrations range: 0.4-0.7 μM, Vitens Watertechnologie, The 

Netherlands). Experimental nitrite concentrations were realized by infusion of 

NaNO2 (Merk, Hohenbrunn, Germany) stock solutions prepared in tap water 

(Table 1), which were pumped into the tanks by a peristaltic pump (Watson 

Marlow 505 S; Rotterdam, The Netherlands) at a flow of 4.75 L per day per 

tank; each tank was equipped with an air stone positioned at the point of 

sodium nitrite inflow to guaranty good mixing of the infused stock solution with 

the tank water. Flow rates were monitored daily and adjusted when necessary 

to reach the desired nitrite concentrations. Nitrite concentrations were 

gradually increased to the desired concentrations during the first 4 days of the 

experimental period. Fresh stock solutions (Table 1) were prepared daily 

during the first 11 days of the experimental period and in this period nitrite 

(NO2
--N), nitrate (NO3

--N) and total ammonia (NH4
+-N plus NH3-N) 

concentrations were monitored daily (NitriVer 3 TNT Reagent Set, NitraVer X 

Nitrogen-Nitrate Reagent Set, Nitrogen-Ammonia TNT, AmVer Reagent Set, 

tests for NO3
-, NO2

- and NH4
+, Hach Lange, Düsseldorf, Germany, in a Hach 

DR/890 colorimeter, Hach Lange, Düsseldorf, Germany). During the remainder 

of the experimental period fresh stock solutions were prepared weekly and 

nitrite, nitrate and total ammonia concentrations monitored twice per week. 

Water temperature, pH and dissolved oxygen concentrations were monitored 

daily prior to feeding in all tanks (Hach Lange HQ 40 multimeter, Düsseldorf, 

Germany) throughout the entire experiment. Mean (SD) water temperature was 

25.7 (0.5) °C throughout the experimental period. Conductivity was measured 

with a WTW Cond 315i (WTW GmbH, Weilheim in Oberbayern, Germany), and 

presented in Table 1. 

 

2.2 Blood sampling 

 On the day nitrite exposure started (day 0), fish in treatment 1 (t=0) 

were sampled. After 28 days of exposure to nitrite, the fish from the seven 
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remaining treatments were sampled (10-12 fish per tank). Fish were rapidly 

netted and anaesthetized in 0.1% (v/v) 2-phenoxyethanol (Sigma, St. Louis, 

USA). Within 2 min, blood (2 x 1.0 mL) was taken by puncture of the caudal 

vessels with a tuberculin syringe fitted with a 25-gauge needle; Na2EDTA was 

used as anticoagulant. One 150 microtiter aliquot was immediately used for the 

hematocrit determination and hemoglobin/methemoglobin measurement. The 

remainder of blood was immediately centrifuged for 10 min (14,000 g, 4°C) and 

the plasma so obtained stored at -20°C until further analyses. 

NO2- 

Treatment 

Stock 

solutions 
Predicteda water quality Measured water quality 

[NaNO2]    

(g/L) 

[NO2-] 

(μM) 

[Na+] 

(μM) 

[Cl-] 

(μM) 

[NO2--N] 

(mg/L) 

[NO2-] 

(μM) 

Conductivity 

(mS/cm) 

pH range 

2 - Pair fed  0 0 0 0 0.93 66 448.4 (9.9) 7.27-7.80 

3 – Control 0 0 0 0 0.10 6 488.0 (23.2) 

 

7.06-7.73 

4 – NO2- 2.58 89 89.3 0 1.55 111 492.5 (21.5) 

 

7.01-7.80 

5 – NO2- 5.15 179 178.6 0 3.92 280 484.5 (23.1) 

 

7.28-7.79 

6 – NO2
- 10.30 357 357.1 0 6.43 459 514.4 (30.1) 

 

7.40-7.87 

7 – NO2- 20.60 715 714.3 0 13.0 928 545.8 (14.4) 

 

7.28-7.80 

8 – NO2- + 

NaCl 

20.60 715 6361.1 5646.8 12.9 921 1300.3 (78.3) 

 

7.01-7.88 

Table 1. Composition of the treatment specific stock solutions, the predicteda nitrite and sodium 
concentrations, the predicted salinity in all treatments and the measured values per treatment for 
nitrite concentration, conductivity and the pH range. 
a Based on equal flow rates per tank of 5 L/day for the stock solutions and 500 L/day for the tap water flow. 

 
2.3 Blood hematocrit, hemoglobin and methemoglobin levels 

 Immediately after blood puncture, subsamples were drawn into 

(heparinized) glass capillaries and centrifuged (13,600 g; 2 min) to measure 

hematocrit values. Results were rounded to the closest 0.5%. Blood hemoglobin 

and methemoglobin were measured with commercially available kits 

(Instruchemie, Delfzijl, The Netherlands; FAR diagnostics, Verona, Italy).  

2.4 Plasma concentrations of nitrite, nitrate, cortisol, glucose, lactate, chloride, 

plasma osmolality and branchial Na+/K+-ATPase activity 

 Plasma concentration of cortisol was determined by 

radioimmunoassay as described in detail by Gorissen and colleagues (2012). 

Plasma osmolality was measured using a cryoscopic osmometer (Osmomat 030, 
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Gonotec, Germany). Plasma concentrations of glucose, lactate, chloride, nitrate 

and nitrite were measured with commercially available enzymatic kits adapted 

to 96 wells plates as described recently (Schram, et al, 2010; Schram et al, 

2012). Branchial Na+/K+-ATPase activity was measured as described by Metz 

and colleagues (2003). 

2.5 Gill morphology 

 From each fish a second gill arch was removed immediately after blood 

sampling and placed overnight in Bouin’s fixative (75 volumes saturated picric 

acid, 25 volumes saturated formaldehyde, and 5 volumes acetic acid) and then 

embedded in paraffin. Gill sections were made to include the trailing edge of the 

filament where in this species the chloride cells reside. Gill sections were 

immune-stained according to Dang and colleagues (2000) as described in detail 

for African catfish (Schram et al, 2010; 2012). 

2.6 Specific growth rate, feed intake and feed conversion rate 

 On day 0 and day 28, the fish in each tank were individually weighed 

(Mettler PM 34 Delta range) to the nearest 1 g, to calculate the specific growth 

rate (SGR) as follows: 

t
WWSGR t

100
))ln()(ln( 0 

 
 

Where SGR = specific growth rate (%/d), Wt = mean weight at day 28, W0 = 

mean weight at day 0 (g) and t = number of days. 

 Floating feed (Catfish type Me-3; Skretting, Boxmeer, The Netherlands) 

with 49% crude protein and 11% crude lipids was given twice daily at 9:00 and 

15:00 until apparent satiation (no more feed taken for at least 5 min following 

administration of the feed). Feed loads per tank were recorded daily. All 

uneaten pellets were collected from each tank 1 h after each of the two daily 

feeding sessions. Feed loss per tank was calculated as the total number of 

uneaten feed pellets multiplied by 0.0966 g per pellet, the average weight of a 

pellet, determined by weighing 100 feed pellets. Daily feed intake per tank 

resulted from the difference between daily feed load and daily feed loss. Daily 

feed intake per tank was divided by the number of fish in the tank to calculate 

the daily feed intake per fish in each tank (to account for different numbers of 

fish per tank). For each tank the total feed intake per fish (TFI) was determined 

by summation of daily feed intake per fish in each tank. Total feed intake per 

fish and biomass increase per fish were used to calculate feed conversion rate 

(FCR) as follows: 
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)( 0WW

TFI
FCR

t 


 

Where FCR = feed conversion rate (g/g), TFI = total feed intake (g/fish), Wt = 

mean individual weight at day 28 and W0 = mean individual weight at day 0 (g).  

2.7 Statistics 

2.7.1 Physiological parameters  

 Physiological parameters are expressed as mean (SD) of the individual 

measurements per treatment. For each tanks, 10-12 fishes had been sampled; 

in some instances not all samples were analyzed because of insufficient volume 

or fish mortality. Data were log-transformed (if required) to obtain residuals 

that were normally distributed and to obtain homogeneity of variance of 

residuals across treatment levels. Mean values for physiological parameters 

were tested for differences among the treatments using linear mixed models 

(REML) with treatments as fixed effects and tank as a random effect (F-tests 

with Kenward-Roger approximation to the residual degrees of freedom 

(Kenward and Rogers, 1997)). Statistical analyses were performed in SAS 9.2 

(SAS Institute Inc., Cary, North Carolina, USA). Only when significant treatment 

effects were detected, a least significance difference (LSD) post-hoc analysis 

was used to estimate the level of significance between mean values. For both 

REML and LSD analysis the fiducial limit was set at 5%.  

 Plasma nitrite and plasma nitrate concentrations were related to water 

nitrite concentrations by linear regression analyses (Table 2). 

2.7.2 Feed intake and growth 

 Initial and final individual weight, total feed intake per fish (TFI), 

specific growth rate (SGR) and feed conversion rate (FCR) are presented as 

mean values per treatment (Table 5). Mean values per treatment were log-

transformed to obtain residuals that were approximately normally distributed 

and to obtain homogeneity of variance of residuals across treatment levels and 

then tested for significant differences among the treatments by one-way 

ANOVA in SAS 9.2 (SAS Institute Inc., Cary, North Carolina, USA). For both 

ANOVA and LSD analysis the fiducial limit was set at 5%. 

2.7.3 Concentration-effect curves  

 Nitrite concentration-effect curves were fitted for specific growth rate 

(SGR) and total feed intake per fish (TFI) using a log-logistic model (Seefeldt et 

al, 1995). As a blank could not be included, the effects are expressed as absolute 
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values. Curve-fitting was carried out with the Marquadt and Levenberg 

algorithm (Moré, 1978) in R (the 10% effect concentrations (EC10) and their 

95% confidence limits were calculated (Miller and Miller, 2000).  

3. Results 

3.1 Plasma nitrite and nitrate concentrations 

 We observed a significant (linear increase in plasma nitrite 

concentration with increasing ambient nitrite concentrations (Tables 2 and 3). 

Basal values for the control group were 5.0 (3.6), increasing up to 32.5 (12.6 

μM) in the highest NO2
- treatment. Similarly, a significant linear increase of 

plasma nitrate was observed with increasing ambient nitrite concentrations 

(Tables 2 and 3). Basal plasma nitrate concentrations for the control group 

were 41.6 (28.4 μM), increasing up to 420.2 (106.4 μM) in the highest NO2
- 

treatment. The addition of sodium chloride to high ambient NO2
- (treatment 8) 

did not show an attenuating effect on both plasma NO2
-
 and NO3

- 

concentrations. 

3.2 Blood hematocrit, hemoglobin and methemoglobin 

 No significant differences in hematocrit and methemoglobin levels after 

28 days of exposure to any of the ambient nitrite concentrations were detected 

(Table 4). Significant differences in hemoglobin were detected among 

treatments (Table 4), but within the same (narrow) biological range, marginal 

differences could not be related to treatments.  

Response variable Explanatory variable 
Regression coefficient Intercept 

Estimate P value* Estimate P value 95% CI** 

Plasma nitrite (µM) Water nitrite (µM) 0.026 <0.0001 8.94 <0.0001 6.0 – 11.8 

Plasma nitrate (µM) Water nitrate (µM) 0.41 <0.0001 59.9 <0.0001 34.6 – 85.1 

 

Table 2. Results of linear regression analyses.  
*) equals model P-value 
**) CI = confidence interval 
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Table 3. Mean (SD) values at the start (t =0) and per treatment for the end (t = 28 days) of the 
nitrite experiment for plasma NO2-, plasma NO2- to water NO2- ratio, plasma NO3-, plasma Cl-, plasma 
osmolality and branchial Na+/K+-ATPase activity. Mean values with different superscripts are 
significantly different (REML, P values as shown). SD = standard deviation of mean values per 
treatment, n as indicated in the table. T = 0 values were not considered in the statistical analysis. 
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Table 4. Mean (SD) values at the start (t =0) and per treatment for the end (t = 28 days) for blood, 
hematocrit (Htc), hemoglobin (Hb) and methemoglobin (MetHb), plasma cortisol, plasma glucose 
and plasma lactate concentrations. Mean values with different superscripts are significantly 
different (REML, P values as shown). SD = standard deviation of mean values per treatment, n as 
indicated in the table. t = 0 values were not considered in the statistical analysis. 
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3.3 Plasma cortisol, glucose, lactate, chloride, plasma osmolality and Na+/K+-

ATPase activity 

 No significant differences in plasma concentration of cortisol, glucose, 

lactate, chloride, plasma osmolality and branchial Na+/K+-ATPase activity were 

observed (Table 4). All values were within normal ranges previously reported 

for African catfish, Clarias gariepinus (Schram et al, 2010; 2012). 

3.4 Gill morphology. 

 Gills stained for Na+/K+ ATPase-rich cells (chloride cells) are presented 

for the control group (Fig. 1A), 928 μM NO2
- (Fig. 1B) and 921 μM NO2

- in 

addition with NaCl (Fig. 1C). Gill morphology was not affected by elevated NO2
-
 

exposure. 

 

 

 

Fig. 1. Histology of gill epithelium 
immunohistochemically stained for Na+/K+ 

ATPase-rich cells (chloride cells) of the control 
(1A), 928 μM NO2 (1B) and 921 μM NO2 in 
addition with NaCl (1C) treatment groups. No 
effects on the gill’s morphology with 
increasing water nitrite level were observed. 
Legend: ile = inter-lamellar epithelium, le = 
lamellar epithelium, ils = inter-lamellar space, 
cc = chloride cell, gf = gill filament, gl = gill 
lamellae.  
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3.5 Total feed intake, specific growth rate, feed conversion rate and mortality.  

 Daily feed intake appeared to cumulate to marked treatment effects on 

total feed intake (TFI) (Fig. 2). However, no significant treatment effect on TFI 

could be detected. Also no differences among mean values for specific growth 

rate (SGR), final weight and feed conversion ratio (FCR) could be detected after 

28 days of exposure to nitrite (Table 5). Two fish out of a total 186 died during 

the course of the experiment. Two fishes were euthanized at day 4 (treatment 

7) and day 10 (treatment 6) reaching the humane endpoint. Those 2 fish had 

low hematocrit levels (20%), high levels of methemoglobin (96% and 76% 

respectively) and high plasma nitrite levels (1540 and 510 μM respectively), 

accompanied by reduced activity (Personal observation). 

NO2
- 

Treatment 

Water 

NO2-    

(μM) 

Initial weight 

(g) 

Final weight 

(g) 

TFI 

(g/fish) 

 

SGR 

(%BW/d) 

 

FCR Survival 

(%) 

1 – t = 0 - 234.4 (17.9) - - - - - 

2 - Pair fed 
control 

- 221.8 (4.8) 334.2 (25.0) 87.6 (6.9) 1.46 (0.19) 0.79 (0.08) 100 
 

3 - Control 6 233.3 (19.9) 445.4 (2.6) 156.9 (8.4) 2.32 (0.28) 0.74 (0.02) 100 

4 – NO2
- 111 226.2 (4.0) 409.1 (40.4) 131.8 (18.4) 2.11 (0.29) 0.72 (0.04) 100 

5 – NO2- 280 223.5 (17.0) 390.8 (33.1) 128.7 (5.7) 1.99 (0.03) 0.77 (0.04) 100 

6 – NO2
- 459 210.0 (13.8) 349.5 (64.1) 111.8 (40.3) 1.79 (0.42) 0.80 (0.00) 91.7 

7 – NO2
- 928 187.2 (1.2) 307.4 (6.1) 92.9 (2.2) 1.77 (0.09) 0.77 (0.03) 91.7 

8 – NO2
- + 

NaCl 

921 220.8 (28.5) 360.3 (83.6) 114.8 (39.7) 1.71 (0.37) 0.83 (0.04) 
100 

P-value  0.17 0.19 0.19 0.19 0.34 - 

 
Table 5. Mean (SD) values per treatment (N = 2) for initial weight, final weight, total feed intake 
(TFI), specific growth rate (SGR), feed conversion ratio (FCR) and survival. SD = Standard deviation 
of mean values per treatment. 

3.6 EC10 for total feed intake and SGR 

 The concentration-effect curves for total feed intake and specific 

growth rate in relation to water nitrite concentration (Fig. 3A and 3B) reveal a 

significant effect of nitrite. For total feed intake the EC10 for nitrite is 84 µM 

with a 95% confidence interval from 2 µM to 3.7 mM. For specific growth rate 

the EC10 for nitrite is 43 µM with a 95% confidence interval from 0 to 68 M (Not 

shown on the figures). 
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Fig. 2. Mean (N=2) cumulative feed intake per fish during the experimental nitrite exposure. The 
arrow indicates the first day at which all treatments reached their designated nitrite 
concentrations. 
 

 

Fig. 3. Concentration-effect curves for total feed intake (TFI) (3A) and specific growth rate (SGR) 
(3B) in relation to the water NO2- concentration. TFI = 158*(1-1/(-log[NO2] – 3.1574)/1.2906) (r2 = 
0.72). SGR = 2.4466*(1-1/(-log[NO2] - 3.8324)/2.3018) (r2 = 0.55).  
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4. Discussion 

4.1 Blood hematocrit, hemoglobin and methemoglobin levels  

 A primary toxic action of nitrite is the conversion of hemoglobin to 

methemoglobin, which is not able to carry oxygen (Bodansky, 1951). Basal 

levels of methemoglobin in some fish species can reach 10%, and as a rule of 

thumb, and levels below 50% generally do not result in mortality (Lewis and 

Morris, 1986). At higher levels of methemoglobin (70-80%), the behavior of fish 

is affected as they become less active to reduce their oxygen demand. In some 

species, defense mechanisms exist and acclimatization can occur after a certain 

exposition time (reviewed by Lewis and Morris, 1986; Kroupova et al, 2005). 

Pikeperch (Sander lucioperca) appears unable to acclimatize when chronically 

exposed to 250 μM NO2
-, as mean methemoglobin levels remained at 67% after 

32 days of exposure (Wuertz et al, 2013). African catfish (Clarias gariepinus; 

166 g) exposed to 2.3 mM NO2
- for 96 h showed blood methemoglobin levels to 

increase from 10% to 50% after 24 h, and reaching 90% after 96 h (Hilmy et al, 

1987). Moreover, chronic exposure of African catfish to 1/10th of this dose (0.23 

mM) over a period of 6 months led to a slight increase in methemoglobin 

measured after 1 month (below 15%), reaching a peak after 4 months (40%) 

followed by a decrease to 25% after 6 months exposure (Hilmy et al, 1987). Our 

data indicate similar acclimatization process occurring in our fishes, with acute 

formation of methemoglobin at high ambient nitrite concentrations (seen in the 

euthanized fish) and basal levels reached after 28 days of exposure. 

4.2 Plasma nitrite and nitrate concentrations 

 Plasma nitrite concentrations gradually increased with increasing 

ambient nitrite concentrations (ranging from 1.0-13.7 μM in the control groups 

and 13.1-56.6 μM in the 928 μM group).  

 Plasma nitrite concentration varies among species (Table 6). In some 

species, plasma nitrite concentration can reach build up to levels up to 10 times 

higher than ambient (Eddy et al, 1983). Juvenile African catfish exposed to 1736 

μM NO2
- for 24 h had plasma concentrations on NO2

-
 reaching almost 5.5 mM 

(Ekwe et al, 2012). Exposure of adult African catfish to high ambient nitrite 

concentration seems to elicit a strong initial increase of plasma nitrite, but fish 

seem to acclimatize when chronically exposed to high levels of ambient nitrite. 

This is confirmed by the fact that addition of sodium chloride (6 mM) does not 

show a significant attenuating effect on plasma nitrite concentration. African 

catfish seem to acclimatize to the range of concentration studied; therefore the 

addition of sodium chloride does not add more protective effect. 
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 Plasma nitrate concentrations gradually increased with increasing 

ambient nitrite concentrations. This can be explained by the intrinsic defense 

mechanism of conversion of plasma nitrite into less toxic nitrate (Doblander 

and Lackner, 1996; 1997). African catfish are very tolerant to nitrate exposure, 

as only their growth was affected when ambient concentrations reached 27.04 

mM (plasma: 6.6 (0.9) mM) (Schram et al, 2012). In the current experiment, 

plasma nitrate concentrations were well below the millimolar level, the toxic 

effects observed should therefore be attributed to nitrite rather than nitrate.  

Species 
Water NO2-  

(μM) 

Water Cl- 

(mM) 

Mean plasma NO2- 

(μM) 

Exposure time 

(days) 
Reference 

African catfish  

Clarias gariepinus 
1736 0.62 5456 1 Ekwe et al, 2012 

Nile Tilapia 

Oreochromis 

niloticus 

1736 0.62 4361 1 Ekwe et al, 2012 

Goldfish 

Carassius auratus 
0.43  0.28  0.75  2 

Hansen and 

Jensen, 2010 

Largemouth bass 

Micropterus 

salmoides 

6929 

13865 

0.62 

0.62 

484 

1971 

1 

1 

Palacheck and 

Tomasso, 1984 

865 0.62 76 1 Tomasso, 1986 

Channel catfish 

Ictalurus punctatus 

 1736 0.62 5471 1  
Palacheck and 

Tomasso, 1984 

865 0.62 2784 1 Tomasso, 1986 

Tilapia 

Tilapia aurea 
 1736 0.62 4361 1  

Palacheck and 

Tomasso, 1984 

Pike-perch 

Sander lucioperca 

0 1.13 7.1  32  

Wuertz et al, 

2013 

249 1.13 540 32  

711 1.13 3629 42  

711 12.41 22.1 42  

Rainbow trout 

Onchorhynchus 

mykiss 

0.2 – 2.2 0.28 Not detectable 28  
Kroupova et al, 

2008 
13 0.28 0.65  28  

65 0.28 8.2  28  

Walleye  

Sander vitreus 
900 0.15 

2100 1 Madison and 

Wang, 2006 3000 2 

Table 6. Overview of nitrite plasma concentrations in several fish species under different acute and 
chronic nitrite exposures. When original data were presented in mg/L NO2--N or mg/L, we 
converted them in the international system unit (molar). Data presented in mg/L NO2- were 
multiplied by 21.63 and data presented in mg/L NO2--N were multiplied by 71.14 to obtain result in 
micromolar. 

  During the whole experimental period, no abnormal swimming 

behavior was observed as in other nitrite exposed fish species (Personal 
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observations; Lewis and Morris, 1986). The absence of abnormal swimming 

behavior may be explained by the air-breathing nature of African catfish. 

Branchial nitrite uptake could then be limited by limiting oxygen uptake from 

the water in favor of air-breathing. Quantitative observation of air-breathing 

behavior of nitrite exposed African catfish would be required to assess this 

hypothesis.  

4.3 Stress physiology, plasma osmolality, plasma chloride and gill morphology and 

Na+/K+-ATPase activity  

 Plasma glucose, lactate and cortisol levels were in the normal biological 

range measured in previous studies for this species (Schram et al, 2010; 2012). 

A chronic exposure of 28 days to elevated ambient nitrite concentrations did 

not affect these parameters, underpinning once again the tolerance of the 

African catfish towards high nitrogenous waste compounds. Plasma osmolality 

and plasma chloride, a major determinant of plasma osmolality, were not 

affected by high nitrite concentrations, The Na+/K+-ATPase activity was in the 

range previously observed for this species exposed to ammonia (Schram et al, 

2010). The Na/K-ATPase activity was assessed only in the control group 

(treatment 3), high nitrite (treatment 7) and high nitrite in presence of sodium 

chloride (treatment 8). Since no differences between those extreme groups 

were observed, the intermediate groups were not measured. This enzyme does 

not play a role in the nitrite uptake or removal of nitrite as it was observed for 

ammonia (Schram et al, 2010). The branchial Cl-/HCO3
- exchanger which 

normally is involved in chloride uptake and may be disrupted when ambient 

nitrite concentrations are high, causing a (partial) shift to NO2
- uptake (Jensen, 

2003) was not investigated in this study.  

 In rainbow trout exposed to several increasing nitrite concentrations 

for 28 days, severe morphological alterations of the gills were observed already 

from the lowest 0.22 μM NO2
-, culminating in the highest concentration (65.2 

μM NO2
-) (Kroupova et al, 2008). Over 32 days of exposure to different nitrite 

concentrations (0 - 250 μM NO2
-), 40 to 60% of the gills of juvenile pikeperch 

showed abnormalities. Nevertheless, no changes could be related to treatment 

effects (Wuertz et al, 2013). Toxic effect of gill morphology thus depends on the 

species.  

4.4 Feed intake  

 During the first 4 days of the experiment, when nitrite concentrations 

were building up, feed intake was similar among all treatments. However, when 

the desired concentrations of nitrite had been reached (day 5), different pattern 
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in feed intake showed up almost instantly (Fig. 2), with intermediate patterns 

related to the different concentrations, the minimum feed intake being reached 

in the highest nitrite concentration group, and a potential attenuating effect of 

the addition of sodium chloride. Feed intake and SGR and final weight patterns 

seem to be gradually affected by raising ambient nitrite concentrations (Table 

5; Fig. 2). However, differences are not significant. A pair fed group was 

introduced to discriminate effects of high nitrite exposure from potential effects 

of reduced feed intake. No significant differences were observed in 

physiological parameters for any treatment.  

4.5 Nitrite toxicity 

 The main mechanism of nitrite toxicity is well documented with the 

conversion of hemoglobin to methemoglobin, incapable of carrying oxygen 

(Bodansky, 1951). The comparable methemoglobin levels among treatments 

after 28 days of nitrite exposure show that African catfish is able to acclimatize 

to relatively high ambient nitrite concentrations. Similar methemoglobin 

concentrations were observed in this species exposed to 1/10th of the 96 

median tolerance limit (228 μM NO2
-; Hilmy et al, 1987). Plasma nitrite 

concentrations gradually increased with increasing ambient nitrite 

concentrations. The increase of plasma nitrate with increasing water nitrite 

concentrations indicates that African catfish successfully detoxify internally 

nitrite to less toxic nitrate as described earlier in trout hepatocytes (Doblander 

and Lackner 1996). The addition of sodium chloride (6 mM) does not show a 

further attenuating effect both regarding plasma nitrite concentration and 

growth parameters; African catfish appears to acclimatize to chronic nitrite 

exposure already without sodium chloride; the addition of this compound has 

no real beneficial effect in the concentration range studied.  

 The nitrite concentration range was designed based on actual nitrite 

exposure in commercial African catfish aquaculture combined with values from 

the literature and the aim of this experiment was to measure subtle changes 

that could impair the fish welfare. In our opinion, the set of data obtained 

allows to draw conclusions regarding the nitrite toxicity to African catfish and 

the threshold concentrations for safe aquaculture production. Previous studies 

on nitrite toxicity mainly focused on acute LC50 up to 96 h (reviewed by 

Kroupova et al, 2005). The parameters traditionally measured are mainly 

related to the nitrite effect on blood hemoglobin and methemoglobin formation. 

In this study, we investigated in addition to those parameters, the effect of 

chronic nitrite exposure on stress physiology and growth, parameters of 

interest from the welfare and commercial aquaculture points of view. 
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4.6 Nitrite threshold concentrations 

 African catfish chronically exposed to 1 mM ambient nitrite appears 

capable of mitigating the adverse effects of nitrite. The concentration effect 

curves revealed a significant effect of nitrite exposure on total feed intake and 

specific growth rate. The concentration-effect curves do not provide a clear cut 

nitrite threshold concentration for African catfish as the calculated EC10 values 

for nitrite of 84 µM for feed intake and 43 µM for growth both have very large 

95% confidence intervals. Therefore the reported EC10 values should be treated 

as indicative. All observations jointly taken we advise for African catfish not to 

exceed a nitrite concentration of 43 µM. As stated earlier, several studies 

investigated the acute lethal concentration of nitrite for numerous species, but 

data regarding nitrite toxicity for chronic exposure, combining physiology and 

growth are scare. As an example, the NOEC and LOEC for juvenile rainbow trout 

after 28 days of nitrite exposure was estimated at 0.22 μM NO2
- (0.01 mg/L  

NO2
-) and 4.34 μM NO2

- (0.2 mg/L NO2
-) respectively (Kroupova et al, 2008); 

which indicates that this species is more sensitive to nitrite than African catfish.  

5. Conclusions 

 This study demonstrates that African catfish, Clarias gariepinus, is 

tolerant to high ambient nitrite concentrations over a period of 28 days. Nitrite 

accumulates mildly in the plasma with increasing ambient nitrite 

concentrations. The greater increase in plasma nitrate with increasing ambient 

nitrite concentrations provide a good indirect evidence for internal nitrite 

detoxification into less toxic nitrate. Stress physiology and ionic balance are not 

affected by high ambient nitrite concentrations. Growth and feed intake show a 

differential pattern from the first day of exposure, but differences are not 

significant.  

 We advise for African catfish not to exceed a water nitrite 

concentration of 43 µM (0.6 mg/L NO2
--N). Below this nitrite concentration 

physiological and growth disturbances are avoided.  
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Abstract 

 The ammonia (NH3) and nitrate (NO3
-) threshold concentrations in 

rearing water of juvenile pikeperch (Sander lucioperca) were assessed.  

 Pikeperch with an initial mean (SD) weight of 17.7 (4.2) g were 

exposed to 0.9 (control), 3.6, 5.2, 7.1, 11.2 and 18.9 µM NH3 in the water for 42 

days. Plasma NH4
+ concentrations stayed at control levels (~ 650 µM) up to 

11.2 µM NH3 in the water. At the highest water NH3 concentration tested, 

plasma NH4
+ had more than doubled to 1400 µM. Based on the specific growth 

rate, the EC10 value for NH3 was 5.7 µM.  

 When pikeperch (initial mean (SD) weight of 27.0 (4.9) g) were 

exposed to 0.1 (control), 1.5, 2.3, 3.7, 6.1, 10.2, 15.8 and 25.6 mM NO3 for 42 

days, mean (SD) plasma NO3 concentrations increased linearly from 88 (47) to 

5993 (899) µM at the highest ambient NO3 level. Feed intake, specific growth 

rate and feed conversion ratio were not affected.  

 Neither NH3 nor NO3
- exposure significantly affected hematocrit, 

plasma concentrations of cortisol, glucose, lactate, osmolality, gill morphology 

or branchial Na+/K+-ATPase activity in pikeperch. For juvenile pikeperch we 

advise not to exceed a water NH3 concentration of 3.4 µM (0.05 mg NH3-N/L), 

the lower limit of the 95% confidence interval of the EC10 value for SGR, to 

ensure proper physiology and growth. For NO3
-
 we advise not to exceed 25 mM 

(350 mg NO3
--N/L). This criterion is based on the highest NO3

-
 concentration 

tested (25.6 mM). As no negative effects were detected at the highest 

concentration tested, the actual NO3
- threshold is probably greater than 25.6 

mM.  
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1. Introduction 

 

 Aquaculture of pikeperch (Sander lucioperca) is important for the 

diversification of freshwater aquaculture production in Northern and Central 

Europe, and an attractive alternative for common carp (Cyprinus carpio) and 

rainbow trout (Oncorhynchus mykiss). Among aquaculturists interest increases 

to intensify aquaculture of pikeperch (Muller-Belecke, 2008). In intensive 

recirculating aquaculture systems (RAS) fish run the risk of significant exposure 

to nitrogenous wastes including ammonia (NH3) and nitrate (NO3
-). 

Nitrogenous waste is produced by fish through protein catabolism (Wood, 

1993). The majority of teleostean fish, including pikeperch, is ammonotelic and 

excrete most of their nitrogenous waste as ammonia across the gills to the 

water (Wilkie, 2002). High water ammonia leads to rapid accumulation of 

ammonia in plasma and tissues (Wright et al, 2007), where, at physiological pH, 

it is mainly present as NH4
+ (Wilkie, 2002). High internal ammonia is neurotoxic 

(Cooper and Plum, 1987 in Wilkie, 2002). High water ammonia is an important 

limiting factor for intensive aquaculture (Boeuf et al, 1999) and should 

therefore be kept below a defined species-specific threshold.  

 In RAS, ammonia in the culture water is controlled by conversion of 

ammonia to NO3
- in aerobic biofilters. NO3

- subsequently accumulates in the 

culture water (Bovendeur et al, 1987; Eding et al, 2006) and fish farmed in RAS 

may be chronically exposed to NO3
- levels up to 70 mM (1000 mg N/L; Van Rijn, 

2010). High water NO3
- results in the appearance of NO3 in the plasma 

compartment (Schram et al, 2012; Stormer et al, 1996). Uptake of NO3
- via the 

gills is low compared to that of ammonia and nitrite due to an apparently low 

branchial permeability for NO3
- (Stormer et al, 1996). NO3

- is less toxic than 

nitrite and ammonia (Scott and Crunkilton, 2000). Chronic exposure to high 

NO3 however, can lead to reduced feed intake, and growth (Schram et al, 2012). 

In addition, nitrate is potentially associated with health problems, as observed 

in rainbow trout reared in RAS with near zero water exchange (Davidson et al, 

2011). 

 For juvenile pikeperch, neither NH3 nor NO3
- threshold concentrations 

have been established. As a result it is unclear whether intensive farming of 

pikeperch at high water NH3 or NO3
- results in physiological disturbance and 

reduced growth. We exposed juvenile pikeperch to increased water NH3 and 

NO3
- levels for 42 days to establish threshold concentrations.  
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2. Materials and methods 

 

2.1 Experimental fish 

  

 Juvenile pikeperch (Sander lucioperca) were obtained from Excellence 

Fish BV, Horst, The Netherlands. Husbandry and experimentation was in 

accordance with the Dutch law on animal welfare, and approved by the ethical 

committee for animal experimentation of Wageningen UR Livestock Research 

(number 2012053.b for the NH3 experiment, number 2012021.b for the NO3
- 

experiment). 

 

2.2 Experimental exposure system 

 

 During acclimatization and the experimental period of both 

experiments, all aquaria were supplied with local tap water at a flow rate of 500 

L per day. Experimental NH3 concentrations were realized by infusion of NH4Cl 

stock solutions (Table 1). Sodium bicarbonate (NaHCO3) was added to the 

NH4Cl stock solutions to adjust the pH (overall pH range: 7.00-8.18; Table 1). In 

addition, sodium chloride (NaCl) was added to the NH4Cl stock solutions to 

compensate for the differences in chloride concentrations in the aquaria arising 

from NH4Cl addition. Total predicted sodium concentrations in the aquaria from 

NaHCO3 and NaCl combined were equal among treatments (Table 1). Fresh 

stock solutions were prepared daily during the first 6 days of the experimental 

period. During the remainder of the experimental periods fresh stock solutions 

were prepared twice per week. To prevent evaporation of NH3, stock solutions 

were stored in closed vessels and inside the vessel the surface of the stock 

solution was covered by a floating plastic sheet. NH3 concentrations were 

gradually increased to the designated concentrations during the first 6 days of 

the experimental period. 

 Experimental NO3
- concentrations were realized by infusion of NaNO3 

stock solutions (Table 2). Fresh stock solutions were prepared daily during the 

first 10 days of the experimental periods. During the remainder of the 

experimental periods fresh stock solutions were prepared twice per week for 

both experiments. NO3
- concentrations were gradually increased to the 

designated concentrations during the first 10 days of the experimental period. 

 All stock solutions were prepared in tap water and pumped into the 

aquaria by a peristaltic pump (Watson Marlow 505 S; Rotterdam, The 

Netherlands) at a flow rate of 5 L per day per aquarium.  
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2.3 NH3 experiment 

 

 Juvenile pikeperch (n =192) with a mean (SD) weight of 17.7 (4.2) g 

were randomly divided over sixteen 30-L rectangular aquaria and acclimatized 

to the experimental aquaria for 7 days. The experiment lasted for 42 days and 

consisted of eight, duplicated treatments which were randomly assigned to the 

aquaria. Two extra aquaria were included to collect blood and plasma of 

untreated fish at the start of the experiment (treatment 1, T = 0). Fish in 

treatments 3 to 8 were exposed to one of six different NH3 concentrations in the 

water: 0.9 (control), 3.6, 5.2, 7.1, 11.2 and 18.9 µM. Fish in treatment 2 (pair-fed 

control) were kept at control (0.5 µM) NH3 levels and fed the same feed ration 

as the fish kept at the highest (18.9 µM) NH3 level to discriminate between 

effects caused by low feed intake and exposure to a high NH3 concentration in 

the water.  

 
Table 1. Composition of the treatment specific stock solutions in the ammonia experiment, the 
predicteda total ammonia, ammonia, sodium and chloride concentrations and salinity and the 
measured values per treatment for NH3 and total ammonia (TAmm) concentration, conductivity and 
the pH range in the aquaria. 
a Based on equal flow rates per tank of 5 L/day for the stock solutions and 500 L/day for the tap water flow. 
b Based on a pH of 7.4 and a water temperature of 24°C. 

 
2.4 NO3

- experiment 

 

 Juvenile pikeperch (n =240) with an individual mean (SD) weight of 

27.0 (4.9) g were randomly divided over twenty 30-L rectangular aquaria and 

acclimatized to the experimental aquaria for 14 days. The NO3
- experiment 

lasted for 42 days and consisted of ten duplicated treatments, which were 

assigned randomly to the aquaria. Two extra aquaria (treatment 1, T = 0) were 

included to collect blood and plasma of untreated fish at the start of the 

experiment. In treatments 3 to 10 fish were exposed to one of eight different 
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NO3
- concentrations in the water: 0.1 (control), 1.5, 2.3, 3.7, 6.1, 10.2, 15.8 and 

25.6 mM. Fish in treatment 2 (pair fed control) were kept at control (0.1 mM) 

NO3
- levels and pair-fed to the fish kept in 25.6 mM NO3

-.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Composition of the treatment specific stock solutions in the nitrate experiment, the 

predicteda nitrate and sodium concentrations, the predicted salinity in all treatments and the 

measured values per treatment for nitrate concentration, conductivity and the pH range. 
a Based on equal flow rates per tank of 5 L/day for the stock solutions and 500 L/day for the tap water flow. 

 

2.5 Water quality measurement 

 

 All aquaria were equipped with an air stone to guaranty good mixing of 

the infused stock solutions with the aquarium water. Flow rates were 

monitored daily and adjusted when necessary to reach the desired NH3 or NO3 

concentrations. Total ammonia (TAmm = NH3+NH4
+) and NO3

- concentrations 

were monitored in the respective experiments (Spectroquant cell tests for total 

ammonia and NO3
--N, Merck, Darmstadt, Germany, Hach Lange DR2800 

spectro-photometer, Germany). In both experiments water samples were 

collected twice per week from all aquaria at approximately 11:00, 1 h after the 

first feeding session of the day. NH3 concentrations were calculated from the 

temperature, pH and salinity dependent molar fraction of NH3 and the 

measured TAmm concentrations (Emerson et al, 1975), effectively accounting for 

any variation in pH among NH3 treatments. In both experiments water 

temperature, pH and dissolved oxygen concentrations (Hach Lange HQ 40 

multimeter, Germany) and conductivity (WTW Cond 315i) were monitored 

daily in all aquaria prior to the first daily feeding session (Table 1 and 2). 

Dissolved oxygen ranged 6.7 to 8.1 mg/L in the NH3 experiment and from 6.7 to 

7.0 mg/L in the NO3
- experiment. Water temperature was 23.8°C in the NH3 

experiment and 23.0°C in the NO3
- experiment. pH ranged from 7.00 to 8.18 in 

the NH3 experiment and from 7.10 to 7.98 in the NO3
- experiment. 
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2.6 Sample measurements  

2.6.1 Blood and plasma sampling 

 

 One day before exposure to NH3 or NO3
- started (day 0), fish in 

treatment 1 (T = 0) were sampled. After 42 days exposure, the fish from the 

remaining treatments were sampled (12 fish per aquarium). Fish were rapidly 

netted and anaesthetized in 0.1% (v/v) 2-phenoxyethanol (Sigma, St. Louis, 

USA). Within 2 min, blood was taken by puncture of the caudal vessels with a 

syringe fitted with a 25-gauge needle. Na2EDTA (NH3 experiment) or heparin 

(NO3
- experiment) were used as anti-coagulants. A 10 µl aliquot blood was used 

to assess hematocrit, the remainder was immediately centrifuged for 10 min 

(14,000 g, 4°C) and plasma was stored at -20°C until further analyses.  

 

2.6.2 Plasma NO3
- concentration – NO3

- experiment 

 

 NOx (the sum of NO2
- and NO3

-) was measured with a commercial 

nitrate/nitrite colorimetric assay kit (Cayman Chemical Company, Ann Arbor, 

Michigan, USA). Prior to measurement, plasma samples were filtered using a 

Millipore Ultra-free MC filter device (0.1 μm pore size) to remove haemoglobin 

and reduce background absorbance and improve color formation with Griess 

reagents. Samples of 80 µL (in duplicate) were diluted in the assay buffer and 

then incubated for 3 h at room temperature with 10 µL of Enzyme Co-factor 

mixture and 10 µL of NO3
--reductase mixture. Fifty µL of the first Griess reagent 

(R1) and of the second Griess reagent (R2) were added and absorbance read at 

530 nm in a Wallac 1420 VICTOR2 counter (Turku, Finland). Due to low plasma 

volumes and interference with heparin plasma NO2
- could be determined in 

only a subset of samples. All NO2
-
 values were below 35 µM, which we interpret 

to indicate that plasma NOx refers to NO3
-. 

 

2.6.3 Plasma NH4
+ - ammonia experiment 

  

 Plasma NH4
+ was determined using a commercial kit (Instruchemie, 

Delfzijl, The Netherlands), with a protocol adapted for a 96-well microplate. 

 

2.6.4 Plasma concentrations of cortisol, glucose, lactate, plasma osmolality and 

branchial Na+/K+-ATPase activity 

  

 Plasma cortisol was determined by radioimmunoassay as described in 

detail by Metz and colleagues (2005). Plasma osmolality was measured using a 

cryoscopic osmometer (Osmomat 030, Gonotec, Germany). Plasma glucose and 
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lactate were measured with commercial enzymatic test kits (Instruchemie, 

Delfzijl, The Netherlands), with protocols adapted to a 96-wells microplate. For 

glucose, 10 μL sample or standard (5.55 mM glucose) was mixed with 200 μL 

reagent and incubated for 10 min at 25°C. Absorbance was read within 60 min 

at 495 nm. For lactate, 10 μL sample or standard (4.44 mM lactate) or blank 

(8% perchloric acid) was mixed with 290 μL of lactate reagent and incubated 

for 20 min at 37°C. Absorbance was read at 355 nm. Branchial Na+/K+-ATPase 

activity was measured as described by Metz and colleagues (2003). 

 

2.6.5 Gill morphology 

 

 From each sampled fish the second gill arch was removed immediately 

after blood sampling and placed overnight in Bouin’s fixative (75 volumes 

saturated picric acid, 25 volumes saturated formaldehyde, and 5 volumes acetic 

acid) and embedded in paraffin. Gill sections through the trailing edge of the 

filament, where the chloride cells reside, were immunostained according to 

Dang and colleagues (2000). After removal of the paraffin, blocking of 

endogenous peroxidase with 2% (v/v) H2O2 and blocking of non-specific sites 

with 10% (v/v) normal goat serum, slides were incubated overnight with a 

monoclonal antibody against chicken Na+/K+- ATPase (final dilution of 1:500; 

IgGα5, Developmental Studies Hybridoma Bank, Department of Biological 

Sciences, University of Iowa, USA). Goat anti-mouse (Nordic Immunology, 

Tilburg, The Netherlands) was used as a second antibody (1:150). The slides 

were subsequently incubated with mouse peroxidase anti-peroxidase (1:150) 

(M-PAP, Nordic Immunology). In the peroxidase reaction 0.025% (w/v) 3,3'-

diaminobenzidine (DAB) was used as chromogen in the presence of 0.0005% 

(v/v) H2O2. Finally, sections were dehydrated and mounted. As a control for 

specificity the procedure was carried out as above, with the omission of the first 

antiserum. 

 

2.6.6 Hematocrit levels 

 

 Immediately after blood puncture, subsamples were drawn into 

heparinized glass capillaries and centrifuged (13,600 g; 3 min) to assess 

hematocrit values. Results were rounded to the closest 0.5 %. 
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2.7 Specific growth rate, feed intake and feed conversion ratio 

  

 On day 0 and day 42, fish were individually weighed to the nearest 1 g 

(Mettler PM 34 Delta range), to calculate the specific growth rate (SGR) as 

follows: 

t
WWSGR t

100
))ln()(ln( 0 

  
Where SGR = specific growth rate (%/d), Wt = mean weight at day 42 (g), W0 = 

mean weight at day 0 (g) and t = number of days. 

 

 In both experiments floating feed (Skretting R-2 15F) was given twice 

daily at 10:00 and 14:00 pm until apparent satiation (no more feed taken for at 

least 5 min following administration of the feed). Feed loads per aquarium were 

recorded daily. All uneaten pellets were collected from each aquarium 1 h after 

each of the two daily feeding sessions. Feed loss per aquarium was calculated as 

the total number of uneaten feed pellets multiplied by 11.15 mg per pellet, the 

average weight of a pellet, determined by weighing 100 feed pellets. Daily feed 

intake per aquarium resulted from the difference between daily feed load and 

daily feed loss. To account for mortalities, daily feed intake per aquarium was 

divided by the number of fish in the aquarium, yielding the daily feed intake per 

fish in each aquarium. Cumulative daily feed intake per fish was calculated from 

the daily feed intake per fish in each aquarium. Total feed intake per fish (TFI) 

was determined as the cumulative feed intake at the last day of the experiment. 

Total feed intake per fish and biomass increase per fish were used to calculate 

feed conversion ratio (FCR) as follows: 

)( 0WW

TFI
FCR

t 
  

Where FCR = feed conversion ratio (g/g), TFI = total feed intake (g/fish), Wt = 

mean individual weight at day 42 (g) and W0 = mean individual weight at day 0 

(g).  

 

2.8 Statistics 

2.8.1 Physiological parameters  

 

 Physiological parameters are expressed as mean (SD) of the individual 

measurements per treatment. For each treatment, 24 fishes were sampled; in 

some instances less samples were analyzed due to mortalities or because of 

insufficient plasma volume. When necessary, data were log-transformed to 

obtain residuals that were normally distributed and to obtain homogeneity of 
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variance of residuals across treatment levels. Mean values for physiological 

parameters were tested for differences among the treatments using linear 

mixed models (REML) with treatments as fixed effects and aquarium as a 

random effect (F-tests with Kenward-Roger approximation to the residual 

degrees of freedom (Kenward and Rogers, 1997)). Statistical analyses were 

performed in SAS 9.2 (SAS Institute Inc., Cary, North Carolina, USA). Only when 

significant treatment effects were detected, a least significance difference (LSD) 

post-hoc analysis was used to estimate the level of significance between mean 

values. For both REML and LSD analysis the fiducial limit was set at 5%. Linear 

regression analyses was performed with response variables as fixed effects and 

aquaria as random effects. In addition, F-tests with Kenward-Roger 

approximation to the residual degrees of freedom were used (Kenward and 

Rogers, 1997). Pair-fed groups were not considered in regression analyses. 

 

2.8.2 Feed intake and growth  

  

 Initial and final individual weight, specific growth rate (SGR) and feed 

conversion ratio (FCR) are presented as means per treatment (N=2). Mean 

values per treatment were tested for significant differences among the 

treatments by one-way ANOVA. Only in case significant treatment effects were 

detected, a least significance difference (LSD) post-hoc analysis was used to 

estimate the level of significance between mean values.  

 Mean (N=2) cumulative daily feed intake per treatment was tested for 

significant differences among the treatments by repeated measures ANOVA.  

 Only in case significant treatment effects were detected, a post-hoc 

analysis (LSD for one-way ANOVA, Tukey for repeated measures ANOVA) was 

used to estimate the level of significance between mean values. All analyses 

were performed in SAS 9.2. For all analyses the fiducial limit was set at 5%. 

 

2.9 Concentration-effect curves and NOEC. 

 

 NH3 concentration-effect curves were fitted for specific growth rate 

(SGR) and total feed intake per fish (TFI) using a log-logistic model (Seefeldt et 

al, 1995). As a blank could not be included, the effects are expressed as absolute 

values. Curve-fitting was carried out with the Marquadt and Levenberg 

algorithm (Moré, 1978) as provided in the PRISM 4.00 software package 

(Graphpad Software, Inc.). The 10% effect concentrations (EC10) and their 95% 

confidence limits were calculated (Miller and Miller, 2000). In the NO3
- 

experiment, no observed effect concentrations (NOEC) were determined for 
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SGR and TFI as the highest NO3
- concentrations in the experiment at which no 

significant difference with the control treatment were observed. 

 

3. Results 

 

3.1 Plasma NH4
+  

 

 Up to the second highest water NH3 concentration (11.2 µM) the mean 

plasma NH4
+ concentrations ranged between 614 and 762 µM without 

significant differences among treatments. However, at 18.6 µM water NH3, the 

plasma NH4
+ concentration had significantly increased to a nearly double level 

of 1399 µM compared to all other treatments (Table 3).  

 

3.2 Plasma NO3
- 

 

 Water NO3
- concentration had a strong effect on plasma NO3

- 

concentration. Plasma NO3
- concentrations differed among all treatments 

(Table 4) and increased linearly with increasing water NO3
- concentration 

([Plasma NO3
-] = 0.23 * [Water NO3

-]-0.1(mM); P < 0.0001). In pair-fed fish 

plasma NO3
- levels (Table 4) were not affected. 

 

3.3 Plasma chloride and osmolality and branchial Na+/K+-ATPase activity 

 

 The increase in plasma NH4
+ at the highest NH3 concentration 

concurred with a significant decrease in plasma chloride to 107 mM. Plasma 

chloride ranged between 136 and 150 mM in all other NH3 treatments without 

significant differences among these treatments (Table 3). For plasma osmolality 

significant differences were detected among NH3 treatments (Table 3). No 

differences in plasma chloride concentration or osmolality were detected 

among NO3
- treatments (Table 4). No significant differences in branchial 

Na+/K+-ATPase activity were detected among NH3 treatments (Table 3) or NO3
- 

treatments (Table 4).  

 

3.4 Hematocrit, methaemoglobin, plasma cortisol, glucose and lactate 

 

 No significant differences in hematocrit, plasma concentrations of 

cortisol, glucose and lactate were detected among NH3 treatments (Table 5) and 

NO3 treatments (Table 6). Brown coloration of sampled blood, indicative of 

methaemoglobin formation, was not observed.  
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NH3 

Treatment 

Water 

NH3 (µM) 

Plasma NH4
+    

(µM) n 

Plasma Cl-

(mM) n 

Plasma 

osmolality 

(µOsmol/kg) 
n 

Na+/K+-
ATPase 
activity              

(µmol Pi/h/mg 
protein) 

n 

1 - T = 0 - 716 (348) 11 153 (27)a 22 304 (10) 23 - - 

2 - Pair fed  0.46 614 (175)a 8 136 (24)a 18 281 (9)ad 20 1.44 (0.73) 12 

3 – Control 0.90 657 (250)a 12 150 (24)a 13 296 (14)bc 14 1.42 (0.45) 12 

4 - NH3 3.55 696 (222)a 15 149 (19)a 17 301 (18)b 20 1.44 (0.38) 12 

5 - NH3 5.16 656 (131)a 13 138 (22)a 15 296 (9)bc 17 1.40 (0.53) 12 

6 - NH3 7.12 759 (155)a 16 149 (28)a 17 283 (23)a 21 1.17 (0.30) 11 

7 - NH3 11.2 762 (183)a 15 140 (25)a 18 286 (20)ac 19 1.42 (0.51) 12 

8 - NH3 18.9 1399 (361)b 13 107 (26)b 12 270 (22)d 16 1.52 (0.53) 11 

P value  0.04  0.0001  <0.0001  0.91  

 

Table 3. Mean (SD) values at the start (t =0) and per treatment for the end (t = 42 days) of the 
ammonia experiment for plasma NH4+, plasma Cl-, plasma osmolality and branchial Na+/K+-ATPase 
activity. Mean values with different superscripts are significantly different (REML, P values as 
shown). SD = standard deviation of mean values per treatment, n as indicated in the table. t = 0 
values were not considered in the statistical analysis. 
 

NO3- 

Treatment 

Water 

NO3
-
 

(mM) 

Plasma NO3
-
 

(µM) n 

Plasma 

NO3
- to 

water NO3 

ratio 

n 

Plasma 

Cl-    

(mM) 
n 

Plasma 

osmolality 

(µOsmol/

kg) 

N 

Na+/K+-

ATPase 

activity 
(µmol 

Pi/h/mg 

protein) 

n 

1 - T = 0 - - - - - 121 (21) 20 320 (9) 20 - - 

2 - Pair fed  0.1 75 (27)a 22 1.05 (0.38)a 

 
22 142 (24) 24 309 (13)ac 24 1.2 (0.4) 8 

3 – Control 0.1 88 (47)a 19 0.90 (0.48)a 19 152 (24) 24 303 (6)ab 24 1.4 (0.3) 8 

4 - NO3
- 1.5 380 (52)ab 20 0.26 (0.03)b 20 149 (19) 23 303 (6)ab 23 1.4 (0.7) 9 

5 - NO3
- 2.3 552 (90)ab 18 0.24 (0.04)b 18 141 (29) 24 299 (3)b 24 1.2 (0.4) 9 

6 - NO3
- 3.7 820 (151)b 20 0.22 (0.04)b 20 152 (11) 22 308 (8)ac 22 1.4 (0.3) 8 

7 - NO3- 6.1 1378 (197)c 19 0.23 (0.03)b 19 150 (14) 24 308 (6)ac 23 1.4 (0.7) 8 

8 - NO3
- 10.2 2136 (642)d 14 0.20 (0.05)b 14 133 (21) 22 307 (7)ac 23 1.2 (0.3) 8 

9 - NO3
- 15.8 3493 (553)e 19 0.22 (0.04)b 19 144 (25) 23 303 (7)ab 22 1.2 (0.4) 8 

10 - NO3- 25.6 5993 (899)f 21 0.23 (0.04)b 21 135 (27) 24 312 (10)c 23 0.8 (0.4) 8 

P value  < 0.0001  < 0.0001 

 
 0.64  0.06  0.40  

 

Table 4. Mean (SD) values at the start (t =0) and per treatment for the end (t = 42 days) of the 
nitrate experiment for plasma NOx, plasma Cl- , plasma osmolality and branchial Na+/K+-ATPase 
activity. Mean values with different superscripts are significantly different (REML, P values as 
shown). SD = standard deviation of mean values per treatment, n as indicated in the table. T = 0 
values were not considered in the statistical analysis. 
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Table 5. Mean (SD) values at the start (t =0) and per treatment for the end (t = 42 days) of the 
ammonia experiment for plasma cortisol, plasma glucose and plasma lactate concentrations and 
hematocrit. Mean values with different superscripts are significantly different (REML, P values as 
shown). SD = standard deviation of mean values per treatment, n as indicated in the table. T = 0 
values were not considered in the statistical analysis. 
 
 

NO3
- 

Treatment 

Water 

NO3
-
 

(mM) 

Plasma 

cortisol (nM) n 

Plasma 

glucose 

(mM) 
n 

Plasma 

lactate (mM) n 

Hematocrit 

(%) n 

1 - T = 0 - 13 (22) 20 5.4 (2.8) 22 7.5 (3.5) 22  12 

2 - Pair fed  0.1 134 (106) 24 7.5 (1.9) 24 7.3 (3.3) 13 37 (4) 24 

3 – Control 0.1 210 (150) 23 7.5 (1.6) 24 6.8 (2.6) 20 36 (4) 24 

4 - NO3
- 1.5 119 (123) 23 7.5 (1.9) 23 7.0 (2.5) 18 38 (7) 24 

5 - NO3- 2.3 166 (162) 24 7.3 (1.8) 24 5.4 (3.1) 19 37 (1) 24 

6 - NO3
- 3.7 123 (132) 22 7.7 (1.9) 24 8.0 (3.0) 18 31 (6) 24 

7 - NO3- 6.1 186 (107) 24 7.9 (1.3) 24 8.2 (4.0) 18 36 (5) 24 

8 - NO3- 10.2 155 (123) 22 7.5 (1.6) 24 6.8 (3.5) 14 36 (2) 24 

9 - NO3
- 15.8 115 (132) 21 7.5 (2.4) 24 7.3 (3.1) 15 38 (5) 23 

10 - NO3
- 25.6 47 (31) 23 7.9 (1.5) 24 8.6 (3.7) 17 35 (6) 24 

P value  0.76  0.99  0.99  0.86  

 

Table 6. Mean (SD) values at the start (t =0) and per treatment for the end (t = 42 days) of the 
nitrate experiment for plasma cortisol, plasma glucose and plasma lactate concentrations and 
hematocrit. Mean values with different superscripts are significantly different (REML, P values as 
shown). SD = standard deviation of mean values per treatment, n as indicated in the table. t = 0 
values were not considered in the statistical analysis. 

 

NH3 

Treatment 

Water 

NH3 

(µM) 

Plasma 

cortisol  

(nM) 

N 

Plasma 

glucose 

(mM) 

n 

Plasma 

lactate (mM) n 

Hematocrit 

(%) n 

1 - T = 0  14.3 (8.8) 23 5.63 (3.94) 22 7.56 (4.24) 23 23.1 (3.6) 22 

2 - Pair fed 0.46 12.6 (15.5) 21 7.94 (2.19) 20 4.11 (1.09) 20 32.3 (10.2) 21 

3 - Control 0.90 14.3 (8.8) 15 5.99 (2.49) 16 5.34 (2.41) 14 40.8 (12.1) 17 

4 - NH3 3.55 12.4 (13.0) 20 6.65 (2.36) 20 5.73 (1.52) 20 31.8 (12.3) 20 

5 - NH3 5.16 11.3 (9.1) 18 7.17 (1.08) 17 5.77 (2.45) 17 33.7 (12.2) 23 

6 - NH3 7.12 17.7 (13.6) 21 7.15 (2.64) 21 4.51 (1.65) 18 38.0 (12.9) 23 

7 - NH3 11.2 16.0 (10.7) 19 7.27 (2.17) 19 4.34 (2.08) 18 37.3 (12.1) 19 

8 - NH3 18.9 10.4 (10.4) 18 6.99 (2.55) 18 5.30 (2.44) 16 29.5 (16.1) 19 

P value  0.87  0.85  0.63  0.08  
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3.5 Gill morphology. 

 

Gill morphology (Fig. 1) was not affected by water NH3 , nor NO3
-. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.6 Feed intake, specific growth rate, feed conversion ratio and mortality.  

 

 In the NH3 experiment a total of 19 out of 168 fish had died across NH3 

treatments, resulting in a survival rate ranging between 71 and 100% among 

treatments. Mortality was probably a consequence of low feed intake as 

mortalities occurred mainly towards completion of the NH3 experiment and, 

without exception, dead fish appeared emaciated (data not shown). Mortality 

could not be related to the NH3 treatments (Table 7), leaving the underlying 

reason for emaciation unclear. 

 NH3 exposure had a strong effect on total feed intake (TFI) and specific 

growth rate (SGR). For both TFI and SGR differences were detected among NH3 

treatments (Table 7). At the highest NH3 concentration (18.9 µM) the TFI had 

decreased by 69% and SGR by 75% compared to control. The differences in TFI 

developed over time (Fig. 2). Mean feed conversion ratios (FCR) did not differ 

among NH3 treatments (Table 7).  

Fig. 1. Histology of gill epithelium 
immunohistochemically stained for Na+/K+-
ATPase-rich cells (chloride cells) of the 0.90 
µM (3 – Control), 7.1 µM (6 - NH3) and 18.9 
µM (8 - NH3) NH3 treatment groups and the 
0.1 mM (3 - Control NO3

-) and 25.6 mM (10 - 
NO3-) NO3- treatment groups (200x 
magnification).  
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 No fish died in the NO3
- experiment. Differences in final weight, total 

feed intake (TFI), specific growth rate (SGR) and feed conversion ratio (FCR) 

were not detected among NO3
- treatments (Table 8).  

 

NH3 

Treatment 

Water 

NH3 

(µM) 

Initial weight    

(g) 

Final weight 

(g) 

TFI         

(g/fish) 

 

SGR 

(%BW/d) 

 

FCR 

Survival 

(%) 

 

1 - T = 0 - 16.1 (0.57) - - - - - 

2 - Pair fed  0.46 17.3 (0.41) 25.3 (0.20) ab 7.5 (0.21)a 0.95 (0.04)a 0.94 (0.00) 92 (0.0) 

3 - Control 0.90 18.7 (3.19) 53.4 (12.6)c 21.7 (0.55)bc 2.61 (0.17)b 0.65 (0.16) 71 (18) 

4 - NH3 3.55 18.2 (0.58) 46.9 (1.37)cd 23.0 (1.78)b 2.36 (0.01)bc 0.80 (0.04) 88 (6) 

5 - NH3 5.16 17.7 (0.04) 46.0 (4.89)cd 24.1 (1.73)b 2.38 (0.26)bc 0.86 (0.09) 96 (6) 

6 - NH3 7.12 17.9 (0.38) 40.4 (0.62)cd 19.8 (1.04)c 2.04 (0.09)cd 0.88 (0.01) 100 (0) 

7 - NH3 11.2 18.1 (0.45) 36.7 (6.16)ad 15.4 (0.13)d 1.75 (0.36)d 0.87 (0.26) 88 (18) 

8 - NH3 18.9 17.3 (0.27) 22.5 (1.07)b 6.7 (0.32)a 0.65 (0.08)a 1.31 (0.27) 88 (6) 

P value  0.91 0.007 <0.0001 <0.0001 0.07 0.27 

 
Table 7. Mean (SD) values per treatment (N=2) in the ammonia experiment for initial weight, final 
weight, total feed intake (TFI), specific growth rate (SGR) and feed conversion ratio (FCR). Mean 
values with different superscripts are significantly different (ANOVA, P values as shown).SD = 
Standard deviation of mean values per treatment. 
 

 
Table 8. Mean (SD) values per treatment (N=2) in the nitrate experiment for initial weight, final 
weight, total feed intake (TFI), specific growth rate (SGR) and feed conversion ratio (FCR). SD = 
Standard deviation of mean values per treatment. 

NO3
- Treatment Water NO3

-
 

(mM) 

Initial 

weight (g) 

Final 

weight (g) 

TFI 

(g/fish) 

 

SGR 

(%BW/d) 

 

FCR 

1 - T = 0 - 26.4 (0.3) - - - - 

2 - Pair fed control 0.1 26.6 (0.5) 67.9 (3.3) 34.7 (2.1) 2.29 (0.16) 0.81 (0.02) 

3 - Control 0.1 27.5 (2.0) 72.5 (0.5) 35.2 (1.1) 2.31 (0.16) 0.78 (0.00) 

4 - NO3
- 1.5 26.3 (3.7) 70.4 (2.1) 35.4 (1.0) 2.35 (0.26) 0.80 (0.01) 

5 - NO3
- 2.3 27.4 (0.0) 70.8 (3.5) 35.8 (1.4) 2.26 (0.12) 0.82 (0.03) 

6 - NO3
- 3.7 27.7 (0.3) 65.7 (3.7) 30.7 (3.1) 2.05 (0.11) 0.81 (0.01) 

7 - NO3
- 6.1 27.4 (0.3) 72.8 (3.7) 35.5 (1.7) 2.33 (0.10) 0.78 (0.02) 

8 - NO3
- 10.2 27.5 (0.2) 70.2 (4.2) 34.5 (2.7) 2.23 (0.13) 0.81 (0.01) 

9 - NO3
- 15.8 25.4 (0.5) 68.2 (6.1) 33.8 (3.8) 2.35 (0.17) 0.79 (0.02) 

10 - NO3
- 25.6 28.2 (1.8) 69.5 (3.2) 33.6 (0.5) 2.15 (0.04) 0.82 (0.02) 

P value  0.58 0.81 0.42 0.46 0.25 
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Fig. 2 Mean (N = 2) cumulative feed intake of juvenile pikeperch exposed to ammonia. For series 
marked with different letters the cumulative feed intake resulted in significantly different total feed 
intake (Repeated measures ANOVA, P < 0.05). 
 

Fig. 3. Concentration-effect curves for specific growth rate (SGR, 3A) and total feed intake (TFI, 3B) 

in relation to the water NH3 concentration. SGR = 0.025-0.025/(1+10(-(log[NH3]-1.14)/0.40)), (r2 = 0.90) 

and TFI = 23.1 – 23.1/(1+10(-(log[NH3]-1.15)/0.32)), (r2 = 0.94). EC50 for SGR = 13.7 µM NH3, EC50 for TFI = 

14.2 µM NH3. 
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3.7 EC10 and NOEC for total feed intake and SGR 

 

 The concentration-effect curves for TFI and SGR in relation to the water 

NH3 concentration (Figs. 3A and 3B), yield an EC10 for NH3 of 7.1 µM (0.1 mg 

NH3-N/L), with a 95% confidence interval from 5.1 to 9.8 µM when read against 

TFI. For SGR, a somewhat lower EC10 for NH3 of 5.7 µM (0.08 mg NH3-N/L), with 

a 95% confidence interval from 3.4 to 9.7 µM was calculated. For both SGR and 

TFI the NOEC was 5.2 µM NH3. 

 For both SGR and TFI the NO3
- NOEC was 25.6 mM, coinciding with the 

highest NO3
- concentration the fish were exposed to. 

 

4. Discussion 

 

4.1 NH3 experiment 

 

 Juvenile pikeperch (Sander Lucioperca) successfully control plasma 

NH4
+ up to a water NH3 concentration of 11.2 µM. However, water NH3 levels 

below 11.2 µM lead to reduced feed intake and growth and thus appear 

superior parameters to assess NH3-tolerance.  

 

4.1.1 Plasma NH4
+, feed intake and growth 

  

 Fish produce ammonia as main end product of the catabolism of 

ingested proteins (Handy and Poxton, 1993). Ammonia then appears in the 

plasma compartment, which shows postprandial peaks (Wicks and Randall, 

2002a). Self-intoxication by NH3 is avoided in fish by up-regulating muscle 

glutamine synthetase activity (Wicks and Randall, 2002b) and by excreting 

ammonia across the gills to the water (Wilkie, 2002). High external (water) 

ammonia leads to an influx of ammonia in plasma and tissues (Wright et al, 

2007). To avoid toxic plasma ammonia levels during an influx of external 

ammonia, fish reduce their own ammonia production by reduction of food 

intake (Randall and Tsui, 2002). This ammonia defense mechanism explains the 

reduced feed intake we observed in ammonia exposed pikeperch. Differences in 

feed intake showed up more or less instantaneously at the two highest NH3 

levels (11.2 and 18.9 µM), resulting in significant differences in total feed intake 

among treatments at the end of the experiment. We conclude from this 

observation that the reduced growth in pikeperch in response to NH3 is mainly 

an effect of reduced feed intake, which corresponds to previous observations on 

NH3 exposed turbot (Scophthalmus maximus) (Person-Le Ruyet et al, 1997) and 

African catfish (Clarias gariepinus) (Schram et al, 2010). 
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 A higher ability of fish to cope with high external ammonia has been 

related to lower plasma ammonia concentrations in these fish (Wicks and 

Randall, 2002a). The basal plasma ammonium concentrations of around 650 

µM observed in pikeperch seem high compared to values reported for other fish 

species (~160 µM NH4
+ in African catfish (Schram et al, 2010); ~200 µM Tamm in 

Atlantic salmon (Salmo salar) (Knoph and Thorud, 1996); ~300 µM Tamm in 

European seabass (Dicentrarchus labrax) (Lemarié et al, 2004), may reflect an 

adaptation to piscivory, and may be related to increased tolerance to NH4
+ 

through protonation of NH3 in the plasma compartment.  

 We advise to set the water NH3 threshold concentration for growth at 

3.4 µM, the lower limit of the 95% confidence interval of the EC10 we calculated 

for growth. This indeed classifies juvenile pikeperch as significantly more 

sensitive to water ammonia levels than for instance African catfish (EC10 of 24 

µM). Atlantic salmon appears more sensitive than pikeperch, with growth being 

affected already above 1.4 µM NH3 (Arillo, 1981); also, basal plasma total 

ammonium values in Atlantic salmon are relatively low (~200 µM Tamm, Knoph 

and Thorud, 1996). From that perspective pikeperch seems relatively robust 

and tolerates high water ammonia through the ability to maintain acceptable 

plasma NH4
+ values over a rather wide range of water ammonia levels. The 

prediction would be that this tolerance increases at lower water temperatures 

assuming similar chemistry of NH3 in water and blood plasma (Emerson et al, 

1975). In Atlantic salmon (Knoph and Thorud, 1996) and several other marine 

species such as European seabass, gilthead sea bream (Sparus aurata) and 

turbot (Person-Le Ruyet et al, 1995) this ability seems absent as plasma 

ammonia has been observed to increase linearly with ammonia in the water. 

Unfortunately the possibilities to explore the relation between basal plasma 

ammonia and ammonia sensitivity are limited as data on plasma ammonia and 

detailed threshold concentrations for chronic NH3 exposure of fish are scarce.  

The ability of pikeperch to buffer plasma NH3 to NH4
+ at higher water NH3 is 

limited yet considerable as the plasma NH4
+ concentration in pikeperch 

exposed to 18.9 µM NH3 in the water doubled to almost 1.4 mM compared to 

control values. Apparently a threshold is surpassed between 11.2 and 18.9 µM 

NH3 above which pikeperch can no longer maintain low plasma NH4
+ 

concentrations.  

 

4.1.2 Plasma osmolality, plasma chloride, Na+/K+-ATPase activity and gill 

morphology 

 

 Freshwater fish continuously lose ions via diffusion across the mucous 

epithelium of gills and skin to the surrounding less saline water (Evans et al, 
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2005). For homeostasis of bodily fluids freshwater fish tightly regulate plasma 

osmolality by active Na+ and Cl- uptake (McDonald and Wood, 1981). 

Hypochloremia was detected in pikeperch exposed to 18.9 µM NH3 (concurrent 

with a significant increase in plasma NH4
+) revealing a disturbance of chloride-

homeostasis and interference of plasma NH4
+ with chloride handling. Branchial 

and intestinal chloride uptake from water and food and renal reabsorption are 

key to chloride homeostasis in freshwater fish (Fuentes et al, 1997). It would 

seem then that the significant decrease in food intake seen at high water NH3 

also interferes with chloride regulation in this fish. Further, significant 

differences in osmolality were detected among NH3 treatments. Significantly 

reduced osmolality as compared to the control treatment was also observed in 

pair-fed controls. Thus the decrease in osmolality may indeed be an effect of 

reduced feed intake rather than NH3 exposure per se.  

 At high ambient ammonia several active NH4
+ excretion pathways 

could facilitate ammonia efflux (Wright and Wood, 2009). Na+/K+-ATPase is a 

driving force in active NH4
+ excretion when internal NH4

+ (replacing K+ on the 

enzyme) is exchanged for waterborne Na+ (reviewed by Heisler, 1984; Evans, 

1987; Evans et al, 2005). Increased branchial Na+/K+-ATPase activity in 

response ammonia exposure has been described for several fish species (Alam 

and Frankel, 2006; Sinha et al, 2012). However, in pikeperch branchial Na+/K+-

ATPase activity did not increase in response to increased ambient NH3 nor 

plasma NH4
+. An extensive (re-)analysis of NH3 chemistry at the (sub-)cellular 

level and consideration of NH3 transporter (Rhesus) proteins (Nakada et al, 

2007) seems indicated. At least 4 Rhesus protein species were described in 

branchial epithelium of zebrafish (Braun et al, 2009), but analysis of these is 

beyond the scope of this study.  

 There appears to be no consensus on the effect of ammonia on fish gill 

morphology. In the past gill hyperplasia has been proposed as a common 

indicator for ammonia toxicity in fish (Smith and Piper, 1975; Redner and 

Stickney, 1979 in Mitchell and Cech, 1983) based on various ammonia toxicity 

studies presenting evidence of gill epithelial damage (citations in Mitchell and 

Cech, 1983). However, no evidence of gill damage could be detected in ammonia 

exposed rainbow trout (Oncorhynchus mykiss) (Smart, 1976), Dover sole (Solea 

solea) and turbot (Scophthalmus maximus) (Alderson, 1979). The validity of 

attributing gill hyperplasia to ammonia alone was questioned by Mitchell and 

Cech (1983) once they showed that gill hyperplasia was absent in ammonia 

exposed channel catfish (Ictalurus punctatus), except when low levels of 

chlorine compounds, residuals from municipal water treatment, were present 

next to ammonia. Indeed, for many ammonia toxicity studies in the past the 

presence of chlorine compounds cannot be excluded. Gill damage observed in 
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past ammonia toxicity studies should however not be automatically attributed 

to chlorine rather ammonia exposure as in African catfish gill morphology 

gradually changed with increasing NH3 exposure concentration in water that 

had not been chlorinated (Schram et al, 2010).  

 Morphological changes of the gills may be interpreted as adaptations to 

increase the diffusion distance between the water and the blood flow, reducing 

the permeability of the gills and subsequently the influx of NH3. No clear effects 

of ammonia exposure on gill morphology were observed in pikeperch. The 

absence of such a morphological response in pikeperch gills surprised us as 

pikeperch were clearly affected by the highest NH3 exposure concentration 

(18.9 µM). However, the absence of morphological changes in the gills is not 

exceptional and has been previously reported in other ammonia exposed fish 

species (see above).  

 

4.1.3 Stress physiology 

 

 Plasma cortisol levels below 50 ng/mL or 138 nM are considered as 

stress free levels (typical basal levels for common carp, Cyprinus carpio; below 

15 nM; Metz et al, 2005). Increases up to 166 nM are generally referred to as a 

mild response, while rapid increases above 276 nM are generally considered to 

reflect a severe stress response (Wendelaar Bonga, 1997). The stress and 

energy metabolite parameters (plasma cortisol, glucose and lactate) in 

pikeperch were not affected by NH3 exposure. Plasma cortisol values found in 

this study (10-18 nM) are very much lower than values reported in other 

studies on pikeperch (> 700 nM, Falahatkar et al, 2012; 124-180 nM, Sarameh 

et al, 2012) and probably the best representation of basal cortisol levels in 

pikeperch to date. Plasma glucose and lactate levels observed in the NH3 

experiment are slightly higher than control values reported in other pikeperch 

studies (5mM lactate, 4.5-6 mM glucose, Falahatkar et al, 2012) but lie in the 

range that can be considered normal. We conclude form these observations that 

ammonia even at its highest exposure concentration apparently did not impose 

distress.  

 

4.2 NO3
- experiment 

 

 NO3
- exposed juvenile pikeperch accumulated nitrate in the plasma 

compartment, but no effects on physiology and growth were detected even at 

water nitrate as high as 26 mM, commensurate with the notion that the end 

product of the nitrogen waste cycle is relative harmless to fish. The high NO3
- 

tolerance allows for low water exchange of RAS used for juvenile pikeperch 
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culture. However it should be noted that, next to apparently relatively harmless 

NO3
-, other, potentially harmful compounds may then accumulate in the rearing 

water. 

 

4.2.1 Plasma NO3
-, feed intake and growth 

 

 Nitrate can become toxic to fish (Camargo et al, 2005). Chronic 

exposure to high water nitrate leads to nitrate accumulation in the plasma 

compartment and reduced feed intake and growth in African catfish (Schram et 

al, 2012). In pikeperch plasma NO3
- concentrations increased linearly with 

increasing external NO3 concentrations, seemingly unaffected by the differences 

in sodium concentration and conductivity among treatments. Plasma NO3
- 

increased in a very similar manner to what we observed in NO3
- exposed 

African catfish (Schram et al, 2012). Surprisingly, whereas African catfish 

showed reduced growth and feed intake upon nitrate exposure, pikeperch was 

refractory to this treatment. Clearly species-specific differences in NO3
- toxicity 

exist and are not related to differences in the capability to maintain low plasma 

NO3
- when external NO3

- is high. Instead the internal NO3
- handling seems much 

more important. Differences in sodium concentration and conductivity arising 

from the sodium nitrate addition to the aquaria apparently did not affect NO3
- 

accumulation in the plasma given the linear increase in plasma NO3
- with 

increasing external NO3
- concentrations.  

 The growth performance of the pikeperch in our NO3
- experiment 

(overall mean (SD) specific growth rate of 2.26 (0.15) %/d) corresponds well to 

growth performances of similar sized pikeperch at the same water temperature 

in commercial pikeperch farming (Vestergaard, personal communication). 

 Previously observed molar ratios (plasma:water) of approximately 0.2 

in nitrate exposed rainbow trout (Stormer et al, 1996) and African catfish 

(Schram et al, 2012) suggest that the integument forms a significant barrier to 

waterborne nitrate. The molar ratios we observed in pikeperch range from 0.23 

to 0.26 and are in good agreement with these observations, suggesting similar 

nitrate handling in rainbow trout, African catfish and pikeperch. Daily plasma 

sampling of catheterized, nitrate exposed rainbow trout over a period (8 days) 

revealed that an apparent chemical equilibrium was reached within a day 

(Stormer et al, 1996). We have no data that describe the time-kinetics of plasma 

nitrate levels in pikeperch. However, considering Stormer’s (1996) 

observations on rainbow trout it seems unlikely that after 42 days of nitrate 

exposure, nitrate further accumulates in the plasma to levels that are eventually 

not tolerated by pikeperch. We therefore consider the current experiment 

representative for chronic nitrate exposure.   
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 The millimolar plasma NO3
- concentrations that are apparently 

tolerated by pikeperch support the notion that NO3
- is not very toxic to fish and 

may be considered an end product and stable non-toxic form of nitrogenous 

waste. 

 

4.2.2 NO3
- effects on physiology and gill morphology 

 

 High levels of NO3
- in the water did not affect plasma osmolality and 

plasma chloride. NO3
- exposure did not affect branchial Na+/K+-ATPase activity. 

Apparently a significant hypernitratemia does not alter the activity if this 

enzyme. This corresponds to our observation that the number of Na+/K+-

ATPase rich chloride cells was not affected by NO3
- exposure.  

 NO3 exposure did not cause morphological changes nor anomalies of 

the branchial epithelium of pikeperch. The results taken jointly indicate that 

high levels of NO3
- do not affect permeability of the gills, neither to water or 

ionic species central to osmotic homeostasis, nor to NO3
- itself (Stormer et al, 

1996) as we conclude from the linear mild increase in molar ratios for NO3
- in 

water and plasma; clearly, NO3
- is not very toxic for this species. 

 Considering the mildly elevated plasma cortisol values (just over 100 

nM) observed in all NO3
- treatments, it seems likely that treatment effects (if 

any) on plasma cortisol were overridden by cortisol release due to sampling 

procedures. However, the normal values observed for plasma glucose and 

plasma lactate in pikeperch suggest that NO3
-
 exposure did not chronically 

stress the fish (Wendelaar Bonga, 1997).  

  

5. Conclusions 

 

 Toxicity of nitrogenous compounds to fish depends on several biotic 

parameters, including size and life-stage (McGurk et al, 2006; Brinkman et al, 

2009). The here reported NH3 and NO3
-
 threshold concentrations may therefore 

be exclusively applicable to juvenile pikeperch, Sander lucioperca. Juvenile 

pikeperch chronically exposed to NH3 as high as 11.2 µM NH3 did not show 

major physiological disturbances. However, feed intake and growth decreased 

already at very much lower NH3 concentrations: the EC10 was found to be 5.7 

µM for SGR and 7.1 µM for TFI. Feed intake and growth are thus good and easily 

assessed indicators for negative effects of high NH3 on pikeperch.  Considering 

the lower limit of the 95% confidence interval of the lowest EC10 value, the NH3 

threshold concentration for juvenile pikeperch should be set at 3.4 µM (0.05 mg 

NH3-N/L). 
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 Juvenile pikeperch chronically exposed to the highest NO3
- test 

concentration (25.6 mM) did not show major physiological disturbances or 

reduced growth performance. The threshold concentration for chronic NO3
- 

exposure of juvenile pikeperch thus seems to lie outside the NO3
- range 

investigated in the current experiment. We propose to use the highest test 

concentration that (still) showed no significant effect as a safe threshold 

concentration for NO3
-: 25.6 mM (358 mg NO3

--N/L).  
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General discussion 

 In this thesis acute and chronic discomfort of cultured fish is addressed. 

After a brief summary of the most important findings a more in-depth 

discussion of the main findings is given. 

 1. Summary of the results 

 The overall aim of this thesis research is to increase knowledge on 

welfare of farmed fish through study of the effects of relevant and well-defined 

external stimuli on physiology and behavior. 

 In chapters 2-4, we investigated the effects of acute, potentially painful 

stimuli that are likely to cause acute discomfort in fish. We used ultrastructural, 

physiological and behavioral analyses as read-out parameters for this acute 

discomfort.  

 The presence of nerve fibers involved in pain perception (A-δ and C-

fibers) was established in the tailfin of the teleost common carp, Cyprinus carpio 

(chapter 2); very similar fibers could also be demonstrated in the tail fin of 

Mozambique tilapia, Oreochromis mossambicus (chapter 3) and zebrafish, 

Danio rerio (chapter 4). When Nile tilapia, Oreochromis niloticus, received a 

tailfin clip, the fish responded by active mucus secretion from their gills 1 h 

after the stimulus, and after 6 h, branchial chloride cells migrated to lamellar 

positions and enhanced swimming activity was seen that could be ascribed to 

the clip proper (compared to controls, in unhandled and handled test groups). 

Plasma parameters (cortisol, glucose and lactate concentrations) did not allow 

discrimination between the clipping procedure and the handling stress, 

showing the limitations of these parameters in this field of research (chapter 

2).  

 Chapter 3 deals with the effects of another acute potentially pain-

inducing stimulus, presumed non-damaging, applied to the tail region of 

Mozambique tilapia, i.e. a standardized electric shock. This stimulus was 

selected because it can induce pain without inflicting the apparent physical 

damage inherent to clipping. We observed decreased swimming activity up to 4 

h and a latency in resuming chafing behavior. Plasma glucose had significantly 

increased 6 h after the shock compared to handling, indicative of an enhanced 

adrenergic activity. In contrast to the fin clip, no effect on branchial mucus 

release or chloride cell migration/proliferation was found. The results show 

that exposure of Mozambique tilapia to even a mild electric shock has an effect 

on the fish. In our view this study supports the EFSA recommendations on 

electro-stunning conditions for fish, i.e. electrical stunning should provoke 
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immediate loss of consciousness and sensibility in fish (EFSA, 2009b). The 

differential responses to the two types of noxious stimuli studied in chapters 2 

and 3 indicate that these noxious stimuli are discriminated by the fish from the 

stress stimuli inherent to the handling procedures to apply a noxious stimulus. 

 Behavioral parameters such as swimming and light-dark preference 

were affected by both clipping and electro-shock. In chapter 4, the effect of fin 

clipping on habituation in zebrafish, using a novel tank test was studied. 

Habituation to novelty can be demonstrated by a reduction in behavior related 

to anxiety (freezing, erratic movements) and increased exploration. In our 

study we found no differences in these ‘classical’ behavioral parameters on the 

days the fin clip was given (day 1 and day 5). Habituation was affected by the 

painful stimulus when applied on the 5th day, while the novelty-induced anxiety 

may override the fin clip effect on the 1st day, as a result of motivational conflict. 

Therefore we concluded that both fin clipping and mild electro-shocking are 

noxious stimuli that induce acute discomfort, but discomfort the fish can 

overcome. 

 In chapters 5-8 of this thesis, we investigated effects of ambient 

nitrogenous waste products on stress parameters and growth of two species 

during on-growing in European RAS conditions: African catfish, Clarias 

gariepinus and pikeperch Sander lucioperca.  

 Chapter 5, African catfish face severely decreased food intake and 

growth rate upon exposure to ambient concentrations of ammonia above 90 

μM. Gill morphology was gradually affected with increasing ambient ammonia 

concentrations. At the highest concentration tested, severe epithelium 

hypertrophy and lamellar fusion was seen, which was interpreted as a defense 

mechanism to increase the distance between the ambient water and the ‘milieu 

intérieur’ of the fish and thereby limit passive ammonia influx. Remarkably, the 

fish managed to keep plasma ammonium concentrations constant, even at the 

highest ambient ammonia levels. Other plasma parameters remained 

unaffected or were (mildly) affected, at the highest ambient ammonia 

concentration only. We advise, based on a concentration dependence study, not 

to exceed a water concentration of 24 μM NH3, to avoid the risk of impaired 

growth, reduced feed intake and deteriorated gill morphology in this species. 

  Chapter 6 reveals a concomitant rise in the plasma nitrate 

concentrations of African catfish when exposed to increasing ambient nitrate 

levels. We show a concomitant rise in plasma nitrate concentrations. Food 

intake and specific growth rate were only affected at the highest ambient 

nitrate concentration tested. Hematocrit, plasma composition, gill morphology 

and cellular make-up remained unaffected regardless of the ambient and 
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plasma nitrate concentrations. We advise not to exceed a water concentration 

of 10 millimolar nitrate to avoid the risk of impaired growth in African catfish.  

 In chapter 7, it is demonstrated that African catfish exposed to 

increasing ambient nitrite concentrations have plasma nitrite concentrations 

that increased concomitantly. In addition, plasma nitrate increased 

concomitantly as well, revealing a defense mechanism of internal detoxification 

(nitrite conversion to the less toxic nitrate in the plasma). Blood hematocrit, 

hemoglobin and methemoglobin, plasma composition, gill morphology 

remained unaffected regardless of the ambient nitrite concentrations. We 

advise not to exceed a water concentration of 43 μM nitrite to prevent risks of 

impaired growth in this species kept in RAS. 

In chapter 8 we report on juvenile pike perch exposed to different 

ambient concentrations of NH3 and NO3
-. Plasma concentrations of NH4

+ 

appeared to be tightly regulated and increased only at the highest 

concentration of NH4
+ studied. Plasma NO3

-
 however increased linearly with 

increasing ambient nitrate concentrations. In both studies, blood hematocrit, 

plasma composition, and gill morphology were unchanged. Growth became 

affected by an ammonia concentration of 11.2 μM, but was not affected by 

nitrate exposure. For juvenile pikeperch in RAS we advise not to exceed a water 

NH3 3.4 µM (0.05 mg NH3-N/L), the lower limit of the 95% confidence interval 

of the EC10 value for ammonia on the specific growth rate (SGR). The threshold 

concentration for chronic NO3
- exposure of juvenile pikeperch thus seems to lie 

outside the NO3
- range investigated in the current experiment. We propose to 

use the highest test concentration that (still) showed no significant effect as a 

safe threshold concentration for NO3
-: 25.6 mM (358 mg NO3--N/L).  

2. Nociception and pain in fish 

 In fish, nerve fiber types that we know are involved in nociception in 

mammals were first identified in the trigeminal nerve of rainbow trout, 

Onchorhynchus mykiss (Sneddon, 2002). Furthermore, some invertebrates also 

possess nociceptors (Smith and Lewin, 2009; Elwood, 2011) and there is 

convincing evidence that some invertebrate species respond to a stimulus 

known to induce pain in mammals, by behavioral changes (Elwood, 2011). Thus 

nociception is (at least) a vertebrate trait. But the possession of such fibers, 

nociceptive reflex circuitry, does not automatically imply pain 

perception/interpretation of painful stimuli, as this part is done in the brain. In 

this thesis, we identified and quantified the nociceptive fibers in the tailfin of 

common carp, Nile tilapia, and zebrafish. The fiber types and composition was 

similar to those found in the head of rainbow trout (Sneddon, 2002). The 
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relative abundance of specific nerve fibers is not universal among vertebrates, 

nor within an organism (Lynn, 1994; Lamont et al, 2000). The differences 

between mammals and teleosts regarding the relative abundance of A-δ and C-

fibers may relate to the water-to-land transition (Sneddon, 2002). A terrestrial 

niche with increased chances of injuries due to gravity, extreme differences in 

temperature (day vs. night) and noxious gases (Sneddon, 2002) may have had 

impact on the more complex development of nociceptive system of terrestrial 

vertebrates. Acute pain stimuli, mediated through A-δ fibers, may have an 

important survival value as they drive the organism away from the location of 

the noxious stimulus and will facilitate the healing process (Lamont et al, 2000).  

 The types of pain mediated by C-fibers in mammals (pathologic and 

chronic pains) are by their very nature linked to higher cognitive brain centers 

where noxious signals are interpreted as such. The presence of C-fibers in 

teleost fish would suggest then an analogy. It seems reasonable to propose that 

fish, the earliest vertebrates, developed two nociceptive systems to 

discriminate chronic from acute noxious stimuli as these stimuli are not 

restricted to terrestrial niches.  

For non-human vertebrates, not able to express verbally their 

subjective experience of pain and distress, scientists have to rely on indirect 

parameters, including behavior as readout for pain (Chapman et al, 1985; Keefe 

et al, 1991; Lamont et al 2000). Behavioral changes can be used as indicators 

for pain studies in fish; rainbow trout injected in their lips with either bee 

venom or acetic acid, substances used in mammalian pain research, displayed 

significant delayed resume feeding and increased opercular beat rate for up to 

2h 30 min in comparison to control and saline-injected fish (Sneddon et al, 

2003a; 2003b); unanaesthetized goldfish, Carassius auratus, displayed escape 

responses to noxious increase in heat (Nordgreen et al, 2009). In our studies we 

used simple behavioral tests such as swimming activity and place preference in 

tilapia subspecies receiving a tailfin clip or a tail electric shock as potentially 

painful stimuli. In both studies, the behavior of the animals was more 

profoundly affected by these stimuli than the groups that were handled only. 

After an electric shock plasma glucose had significantly increased at 6 h post-

shock compared to handling, which is indicative of enhanced/stronger 

adrenergic activity; for fin clipping no significant differences in levels of 

cortisol, glucose, lactate were observed. However, fin clipping resulted in a 

remarkable migration of Na+/K+-ATPase-rich chloride cells in the gills to the 

lamellar epithelium 6 h after clipping. In the clipped fish the gill mucus cells 

released their content at 1 h after the clip; this response is transient, at 6 h post 

clipping mucus cells had ‘refilled’. In all vertebrates and independent of location 

(gills, intestinal tract, skin) mucus cells are well equipped with adrenergic 
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receptors and thus mucus cell responses appear suitable indicators of 

adrenergic surges as we anticipated would occur with painful stimuli.  

We used the novel tank test paradigm to obtain behavioral indicators 

for the effects of potentially painful stimuli. The effects of fin clipping on 

swimming activity and freezing behavior of zebrafish in our novel tank gave a 

first clue on the impairment of habituation to a novel environment, a 

modulation of a complex behavior which requires cognitive abilities. These 

results of pain-modulated behavior suggest interpretation of a presumed 

painful stimulus for which cognitive functions are required. More research 

should be carried out using such (automated) behavior tests is fish pain 

research.   

3. Nitrogenous waste: compound- and species-specific effects 

 Water quality is of crucial importance for fish well-being. Threshold 

levels for water temperature, salinity, pH, oxygen content are well-documented 

for many species with economical or research interest. The increasing 

implementation of recirculating aquaculture systems (RAS) enables fish 

farmers to be less dependent on natural water sources and reduces the impact 

of this industry on the environment (Piedrahita, 2003; Read and Fernandes, 

2003) but does require close monitoring of water quality, in particularly the 

feeding-associated production of nitrogenous waste. In RAS water is 

mechanically and biologically filtered to prevent turbidity and accumulation of 

ammonia, nitrite and nitrate (Van Rijn et al, 2006). Due to high stocking 

densities in RAS (compared to open farming systems), problems with 

nitrogenous waste exposure may easily arise. In sub-optimally functioning RAS, 

fish can be exposed to high and toxic concentrations of any of the nitrogenous 

substances associated with nitrogen cycling in the system. When starting 

culture of a new species in RAS, it is quintessential to know optimal conditions 

of culture, especially regarding formation of nitrogenous waste products. 

Nitrogenous waste production is particularly problematic under high feeding 

pressure and/or when the capacity of the bio-filter is exceeded. 

 RAS systems have high investment and maintenance costs (De Ionno et 

al, 2006). For the industry to be profitable, fish are farmed at high densities, 

which is synonymous to a high input of nitrogen from the (potentially uneaten) 

diet and fish metabolism. High nitrogen input can lead to saturation and 

malfunctioning of the biofilters of the system, then leading to accumulation of 

nitrogenous waste. Previous toxicological, acute-exposure studies on 

nitrogenous waste compounds mostly focused on 96 h LC50 values for 

ammonium, nitrite and nitrate. Such data are important, but not very relevant 
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for professional fish farmers, which are interested in the concentrations at 

which growth and welfare of the animals become impaired. 

 We conducted a series of experiments in which African catfish was 

exposed to different levels of ammonia, nitrite and nitrate and assessed effects 

on physiology and growth performance. We chose to investigate realistic 

concentration ranges, as reported to occur in RAS. Our aim was to be able to 

discriminate subtle changes on parameters important for the fish farmers, 

without causing mortalities. In addition, we conducted experiments with a 

recently introduced species in Dutch aquaculture, the pikeperch. This species is 

more sensitive to ammonia than catfish, but less sensitive to nitrate. We 

observed not only different responses between the two species, but also 

between individuals within the same species, depending on the compound 

tested. The studies substantiate the need to study species independently and 

hold a warning to be careful with extrapolations from one to another species. 

 Ammonia was, as predicted from the literature, the most toxic 

compound for both species; fish growth became impaired at micromolar 

concentrations. This toxicity was confirmed by the tight plasma regulation of 

ammonia by both species. African catfish plasma and branchial physiology 

together with gill morphology were affected at the highest concentration 

investigated. These effects were not observed in pikeperch, but the highest 

concentration used for this species was 49 times lower than for the African 

catfish. Concentration ranges were selected after literature studies on the 

species ecology and particularities. African catfish showed gradual 

morphological changes in the gills in response to increasing ambient ammonia 

concentrations. Gills harbor a multifunctional epithelium, involved in gas and 

ion exchange, water balance and waste excretion (Goss et al, 1998; Perry and 

Gilmour, 2002). In stressful situations, the epithelium may show 

hypertrophy/hyperplasia as protective mechanism (increase in diffusion 

distance for toxicants); tissue proliferation impedes gas exchange (which 

benefits from a thin epithelium) but can be considered a temporal 

escape/compromise to avoid influx of toxic molecules such as ammonia. African 

catfish is an air-breathing fish, and although thickening of the branchial 

epithelium will impair gas exchange in the gills, its air-breathing capacity (via 

the arboreal tissue associated with the gills arches) may offer an escape.  

 Chronic exposure to nitrite did not induce high levels of 

methemoglobin in African catfish as is observed in juvenile pikeperch (Wuertz 

et al, 2013). Growth of African catfish was only affected at 27 mM, the highest 

concentration studied. Nitrate did not affect physiological parameters in African 

catfish, nor pikeperch. Both species were exposed to a similar concentration 

range. This confirmed the relative low-toxicity of nitrate. It is interesting to 
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mention that growth was affected at 27 mM nitrate in catfish, but not in juvenile 

pikeperch at 25.6 mM nitrate. The latter was assumed to be a more sensitive 

species for ammonia and nitrite (Wuertz et al, 2013). This notion again 

underlines the importance to study the effect of each component for each 

species (and at different life stages as well). 

  African catfish is rather tolerant to constant high concentrations of 

nitrogenous waste compounds. In practices, fish may experience high 

concentrations of nitrogenous compounds mostly after the feeding sessions 

(Jobling, 1981). The peaks in waste products seen are normally buffered by the 

bio-filters within few hours. As ammonia is oxidized to nitrate (via nitrite), 

peaks of nitrite and nitrate follow the ammonia peak with a delay. We provided 

fish farmers safe thresholds for the three compounds below which growth is 

not affected. We studied the effect of those compounds independently. It is 

important to realize that in RAS system, fish are likely to be exposed to a 

combination of those 3 compounds simultaneously. Effects of stressors do add 

up. The results of these experiments should be seen in the concept of allostasis 

(McEwen and Wingfield, 2003). An accumulation of stressors may overtax the 

adaptive capacity of an animal and lead to allostatic overload and poor welfare 

(Korte et al, 2007). Fish can cope with stressors up to a certain point, where the 

load can become an overload (too strong) and the effect deleterious for the fish. 

The accumulation of stressors in RAS and other aquaculture systems may 

comprise high densities, aggression, feed withdrawal, diseases and pathogens, 

handling, transportation, noise (Ashley, 2007; Barton et al, 1991; Davidson et al, 

2009; Mohapatra et al, 2013; van de Nieuwegiessen, 2009). High concentrations 

nitrogenous waste compounds are not unrealistic in RAS and exposure to an 

additional stressor could cause an allostatic overload.  

4. Concluding remarks and perspectives 

 

 Worldwide aquaculture is a fast growing industry (with fisheries being 

stabilized, FAO, 2012). Due to increasing societal awareness in various 

countries, attention has been drawn to fish welfare in aquaculture. This 

situation is recognized more and more; for instance, several running European 

research projects aim to address welfare issues (COPEWELL, WELLFISH etc.). 

But fundamental research on stress, pain and welfare in fish is still very limited. 

In this thesis, we investigated acute and chronic discomfort that may occur in 

aquaculture. Our results were obtained in laboratory settings. There we could 

reveal subtle responses that suggest that optimization of fish welfare will 

benefit aquaculture. We show that improved growth performance is directly 
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linked to physiological and behavioral parameters indicative of good welfare of 

the fish.  

A next step in studies on pain in fish should focus on early-gene 

expression such as C-fos to directly show involvement of higher brain centers in 

handling of noxious stimuli. It has been shown recently that local electrical 

stimuli applied at the base of sedated Atlantic cod (Gadus morhua) induced 

somatory evoked potentials (SEPs) in the central nervous system (Ludvigsen et 

al, 2013). Additionally, with this new minimally-invasive technique, the authors 

were able to record quantitative responses from multiple brain regions, which 

correlated with the stimulus intensity. The behavioral data coupled with fine 

tuned brain analyses, rendered possible with such techniques could help to 

determine more accurately the part of the brain involved in pain perception 

and reaction to painful stimuli in fish. 

 In our studies on chronic discomfort we investigated the effects of 

single nitrogenous waste products independently introduced in the water. In 

aquaculture an accumulation of negative stimuli through combinations of 

negative stimuli is more realistic to cause an allostatic overload (Schreck, 2000) 

and result in poor welfare. For example, an increase in nitrogenous waste 

compounds may occur at low oxygen levels, which boils down to a multiple 

stressor for the fish. The thresholds that we recommend to protect welfare of 

the studied species in this thesis are for single compounds only; the 

simultaneous presence of high concentrations of multiple waste compounds 

can have more drastic effect as shown for turbot exposed to ammonia at low 

oxygen levels (Foss et al, 2007). Hypoxia is an important stressor in fish 

(Bernier et al, 2012) and hypoxic conditions occur all too often in nature and 

aquaculture alike (Foss et al, 2007; Burt et al, 2012). Some fish species evolved 

powerful strategies to survive hypoxia (Nilsson and Renshaw, 2004) clearly an 

issue in the physiology of fishes. Fish that are not hypoxia-tolerant may be 

predicted to be more vulnerable to nitrogenous waste than those that are.  
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Samenvatting in het Nederlands (Summary in Dutch) 

 

 Het hoofddoel van dit promotieonderzoek was het vergroten van 

kennis omtrent het welzijn van gekweekte vis door het bestuderen van de 

effecten van toediening van relevante en gedefinieerde uitwendige prikkels op 

fysiologie en gedrag. In de Algemene Inleiding (hoofdstuk 1) van dit 

proefschrift wordt dit in meer detail verklaard. 

 In de hoofdstukken 2-4 worden de effecten beschreven van acute en 

potentieel pijn-veroorzakende prikkels op verscheidene fysiologische 

parameters en gedragsparameters. In de staartvin van de karper, Cyprinus 

carpio, zijn zenuwvezels geïdentificeerd die betrokken zijn bij de perceptie van 

pijn (A-δ en C-vezels) (hoofdstuk 2). Wanneer bij Nijl tilapia, Oreochromis 

niloticus, in de staartvin een vinknip werd toegediend (‘tail fin clip’) werd een 

uur later een sterke slijmafgifte door de kieuwen gemeten, en zes uur na 

toediening werd een sterke migratie van branchiale chloridecellen van de 

epitheelcellen naar de kieuwlamellen waargenomen. Daarnaast werd een 

verhoogde zwemactiviteit gemeten. Zes uur na de vinknip waren de slijmcellen 

weer gevuld. Plasmawaarden voor cortisol, glucose en lactaat verschilden niet 

tussen vissen die een pijnprikkel kregen en vissen die alleen gehanteerd waren. 

 In het hoofdstuk 3 worden de effecten bestudeerd van een andere 

acute, potentieel pijn-opwekkende prikkel toegepast op de vissenstaart van de 

Mozambique tilapia, Oreochromis mossambicus in de vorm van een 

gestandaardiseerde, zwakke, elektrische schok. Deze prikkel leidde niet tot 

fysieke schade bij de vis. Gedurende vier uur na de schok namen we een 

verminderde zwemactiviteit waar. Met uitzondering van glucose veranderden 

de andere gemeten plasmaparameters niet. In tegenstelling tot vinknip had de 

elektrische prikkel geen invloed op de afgifte van kieuwslijm of de 

migratie/proliferatie van brachiale chloridecellen. De verschillen in respons 

tussen de vinknip en de zwakke elektrische schok moeten daarom worden 

toegeschreven aan een verschil in de aard van de prikkels zelf en/of de 

onderzochte vissoorten. Beide prikkels hadden echter wel invloed op het 

zwemgedrag; een hogere en lagere zwemactiviteit na toediening van 

respectievelijk de vinknip en het elektrische schokje.  

 Hoofdstuk 4 behandelt 1) het motivatieconflict in de zebravis tussen 

respons op een verblijf in een nieuwe omgeving, dat angst kan veroorzaken, en 

de respons op een vinknip, die mogelijk pijnlijk is; en 2) het effect van de 

vinknip wanneer de zebravis gewend is aan een nieuwe omgeving. Op dag 1 bij 

de start van het experiment was er nog geen sprake van gewenning. We 

veronderstelden dat er op dag 5 wel sprake was van gewenning. 
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Van gewenning aan een nieuwe omgeving is sprake wanneer vissen hun gedrag 

veranderen; voor de zebravis is dit een verlaging van de duur en de frequentie 

van de bewegingsloosheid en grillige bewegingen, en een toename van het 

zoekgedrag. De verandering in gedragsuitingen wijzen op het verdwijnen van 

angst en daarmee het optreden van gewenning. Wanneer de zebravis vijf dagen 

iedere dag in een nieuwe omgeving werd geplaatst en tevens een vinknip kreeg 

op dag 5, nam alleen de totale zwemafstand duidelijk af. Dit laat zien dat er op 

dag 5 geen competitie meer bestond tussen de respons op een nieuwe 

omgeving en de respons op de vinknip; het dier was aan de nieuwe omgeving 

gewend en laat in gedrag een reactie zien op de toegediende vinknip. De 

volgende dag (dag 6) was er geen sprake meer van een verschil in de totale 

zwemafstand voor de zebravis met de vinknip.  

Wanneer de vinknip op de eerste dag na overplaatsing naar de nieuwe tank 

werd gegeven namen we de competitie tussen een respons op een nieuwe 

omgeving en de respons op de vinknip wel waar; het gedrag van de zebravis 

werd beïnvloed door de nieuwe omgeving en niet de toegediende vinknip.  

 Op grond de experimenten in hoofdstuk 2, 3 en 4 concluderen we dat 

zowel vinknip als een (zwakke) elektrische schok weliswaar op de korte 

termijn ongerief gaf, maar dat de vis goed in staat was om deze prikkel weer te 

boven te komen.  

 In de hoofdstukken 5-8 wordt de invloed beschreven van 

stikstofhoudende afvalproducten in het leefmilieu op het welzijn van de 

Afrikaanse meerval, Clarias gariepinus, en de snoekbaars, Sander lucioperca. 

Hoofdstuk 5 demonstreert dat meervallen die worden blootgesteld aan een 

ammoniaconcentratie van minstens 90 μM NH3 te kampen hadden met 

verminderde voedselopname en een lagere groeisnelheid. Ook de 

kieuwstructuur veranderde in toenemende mate bij een oplopende 

ammoniaconcentratie, en bij de hoogste testconcentratie (1084 μM NH3) trad 

sterke hypertrofie op van het kieuwepitheel en versmelting van kieuwlamellen. 

Dit verschijnsel duidde op activering van een verdedigingsmechanisme dat de 

afstand vergrootte tussen het externe milieu (water) en het interne milieu 

(bloed), waardoor de passieve influx van ammonia-influx werd beperkt. Het is 

opmerkelijk dat de vis in staat was om zelfs bij de hoogste externe 

ammoniaconcentratie het plasma ammonia constant te houden. Ook andere 

gemeten plasmaparameters werden niet beïnvloed door een stijging van extern 

ammonia, of lieten slechts matige veranderingen zien bij de hoogste 

concentratie ammonia in het water. Voedselopname en groeisnelheid waren 

alleen (sterk) gereduceerd vanaf 90 μM ammonia en hoger. Om het risico van 
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groeireductie tijdens viskweek te vermijden adviseren wij om een concentratie 

van 24 μM NH3 in het water niet te overschrijden. 

 Hoofdstuk 6 laat zien dat blootstelling van de Afrikaanse meerval aan 

een toenemende concentratie van extern nitraat gepaard ging met een 

verhoging van plasmanitraat. Voedselopname en lichaamsgroei werden alleen 

beïnvloed bij de hoogste nitraat concentratie (27 mM). De hematocrietwaarde 

van het bloed, bloedplasmaparameters en structuur en werking van de kieuwen 

bleven onveranderd. Om het risico op groeivertraging van de meerval te 

vermijden raden we aan om een concentratie van 10 mM extern nitraat niet te 

overschrijden. 

 In het hoofdstuk 7 wordt aangetoond dat blootstelling van de 

Afrikaanse meerval aan een toenemende concentratie extern nitriet een 

navenante toename van de plasma nitrietconcentratie tot gevolg had. Daarnaast 

nam ook de nitraatconcentratie in het plasma toe, wat duidde op een 

beschermingsmechanisme dat gebaseerd is op interne detoxificatie van 

omzetting van nitriet naar minder giftig nitraat. Bloedparameters (hematocriet, 

hemoglobine en methemoglobine), de gemeten plasmaparameters en structuur 

en functioneren van de kieuwen werden niet door nitrietblootstelling 

beïnvloed. Wij adviseren dat de externe nitrietconcentratie niet boven de 43 μM 

moet komen.  

 In het hoofdstuk 8 wordt beschreven hoe jonge snoekbaarzen werden 

blootgesteld aan verschillende externe concentraties van ammonia en nitraat in 

van elkaar gescheiden experimenten. De plasma ammoniaconcentratie bleek 

binnen nauwe grenzen te worden gereguleerd, en nam alleen toe bij de hoogste 

externe concentratie. De plasma concentratie van nitraat, daarentegen, nam 

lineair toe met de stijgende externe nitraatconcentratie. In beide studies bleven 

de gemeten fysiologische parameters en de kieuwstructuur onveranderd. Groei 

werd negatief beïnvloed door ammonia maar niet door nitraat. Daarom 

adviseren we om een water concentratie van 25,6 mM nitraat (de hoogst 

bestudeerde waarde) en van 3,4 μM NH3 niet te overschrijden, opdat het risico 

op verminderde groei van jonge snoekbaars wordt vermeden.  

 In de Algemene Discussie (hoofdstuk 9) worden alle resultaten 

bediscussieerd en geïntegreerd in het licht van het hoofddoel van dit 

promotieonderzoek. 
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Résumé en français 

La demande en poisson ne cesse d’augmenter, non seulement en tant 

que source protéique, avec la constante expansion de l’industrie aquacole, mais 

aussi en tant qu’espèces modèles pour la recherche, animaux domestique ou 

activités récréatives. En conséquence, des millions de poissons sont manipulés 

chaque jour, mais pas nécessairement de la manière adéquate. Cela peut 

s’expliquer par le manque de connaissances sur le bien-être de ces animaux, 

ainsi que du fait qu’ils évoluent dans un environnement totalement différent du 

notre, et finalement, leur aspect n’attire pas forcement de l’empathie au 

premier coup d’œil. L’objectif principal de cette thèse est d’accroitre nos 

connaissances sur le bien-être des poissons d’élevage à travers l’étude des 

effets de stimuli externes pertinents et ciblés sur la physiologie et le 

comportement. Les recherches présentées dans cette thèse traitent de deux 

différents aspects bien être des poissons: inconfort aigu et chronique. Pour 

étudier l’inconfort aigu, nous avons sélectionné comme stimuli une section 

partielle de la nageoire caudale ainsi qu’un choc électrique ciblé, applique dans 

la même région caudale. Pour étudier l’inconfort chronique, nous avons expose 

les poissons pendant de longues périodes (plusieurs semaines) a différentes 

concentrations ambiantes en déchets azotés (ammonium, nitrite et nitrate).   

Dans les chapitres 2, 3 et 4 de cette thèse, nous décrivons les effets de 

stimuli nocifs, potentiellement douloureux, qui sont susceptibles de causer un 

inconfort aigu chez les poissons. Pour cela, nous avons analysé les structures 

nerveuses de la nageoire caudale (zone d’application des stimuli), ainsi que des 

paramètres physiologiques et comportementaux.  

Nous avons démontré la présence de fibres nerveuses impliquées dans 

la perception de la douleur (fibres A-δ et C) dans la nageoire caudale de la carpe 

commune, Cyprinus carpio (chapitre 2). Des fibres similaires ont été également 

mises en évidence dans la nageoire caudale du tilapia du Nil, Oreochromis 

niloticus (chapitre 3), ainsi que du poisson-zèbre, Danio rerio (chapitre 4).  

Le tilapia du Nil répond à une ablation partielle de la nageoire caudale 

par une sécrétion active de mucus au niveau branchial 1 h après avoir reçu le 

stimulus. De plus une migration lamellaire les cellules a chlorure branchiales et 

une activité natatoire accrue ont été observées. Ces réactions peuvent être 

attribués a la procédure d’ablation proprement dite, puisque absentes chez les 

groupes témoins (non-manipulés et manipulés). Les paramètres plasmatiques 

(niveaux de cortisol et glucose) ne permettent pas de discerner entre la part de 

réaction imputable a la procédure d’ablation en elle-même et la part de réaction 

imputable au stress dût à la manipulation ; cela montre les limites de 

l’utilisation de ces paramètres dans ce domaine de recherche (chapitre 2).   
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Dans le chapitre 3, nous avons utilisé un stimulus nocif, 

potentiellement douloureux différent, ne s’accompagnant pas de dommages 

tissulaire; un choc électrique standardisé applique dans la région caudale du 

tilapia du Mozambique, Oreochromis mossambicus. Ce stimulus a été choisi car il 

peut induire de la douleur sans causer de dommage physique inhérents à 

d’autres stimulus tels que l’ablation de la partielle de la nageoire caudale. Nous 

avons observé une diminution de l’activité natatoire jusqu'à une période de 4 h 

après avoir reçu le stimulus, (3 h pour le groupe témoin seulement manipulé) et 

un délai différentiel de 15 min avant la reprise du comportement stéréotype 

‘friction’ ont été observée. Le taux de glucose plasmatique a augmenté de 

manière significative 6 h après avoir reçu le choc; indiquant une augmentation 

de l’activité adrénergique. Contrairement à l’ablation partielle de la nageoire 

caudale, aucun effet au niveau branchial (sécrétion de mucus ; 

migration/prolifération des cellules a chlorure) n’a été observé. Les résultats 

obtenus démontrent que l’exposition du tilapia du Mozambique à un choc 

électrique, même léger, affecte son bien-être. De notre point de vue, cette étude 

supporte les recommandations de l’EFSA sur les conditions d’électro-

étourdissement pour les poissons d’élevage; la procédure d’électro-

étourdissement doit provoquer la perte de conscience et de sensibilité 

immédiatement après son application. (EFSA, 2009). 

Les réponses différentielles aux 2 stimuli étudiés dans les chapitres 2 et 

3 indiquent que les poissons différencient ces stimuli nocifs du stimulus de 

stress seul inhérents aux procédures de manipulations lors de l’application d’un 

stimulus nocif.  

Les paramètres comportementaux comme l’activité natatoire et la 

préférence pour les zones d’ombres/illuminées ont été affectées à la fois par 

l’ablation d’une partie de la nageoire caudale et par l’électrochoc. Dans le 

chapitre 4, nous avons étudié l’effet de l’ablation partielle de la nageoire 

caudale sur l’habituation du poisson zèbre à un nouvel environnement, en 

utilisant le test du nouvel aquarium. L’habituation à un nouvel environnement 

peut être quantifiée par la diminution des comportements liés à l’anxiété 

(‘geler’, mouvements erratiques) et l’augmentation de l’exploration du nouvel 

environnement. Dans notre étude, nous n’avons pas observé de différences 

concernant ces paramètres comportementaux ‘classiques’ les jours ou les 

poissons ont reçu le stimulus (jours 1 et 5 de l’expérience). La distance totale 

parcourue le premier jour n’a pas été affectée par l’ablation partielle de la 

nageoire caudale, mais chez les poissons recevant le stimulus le cinquième jour, 

une fois habitué a la procédure, la distance totale parcourue a diminué de façon 

drastique. De plus, certains individus ayant reçu le stimulus le cinquième jour 
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continuent de ‘geler’ ce jour-ci, alors que les poissons des autres groupes 

n’affichaient plus ce comportement. L’habituation a été affectée par le stimulus 

douloureux seulement lorsque celui-ci est appliquée le cinquième jour, alors 

que la procédure de transfert dans le nouvel aquarium en elle-même cause plus 

d’anxiété que le stimulus douloureux lorsque celui-ci est appliqué le premier 

jour. Nous concluons donc que les deux stimuli; l’ablation partielle de la 

nageoire caudale et l’électrochoc de faible intensité sont des stimuli nocifs qui 

provoquent un inconfort aigu, mais un inconfort que le poisson peut surmonter.  

 

 Dans les chapitres 5, 6, 7 et 8 de cette thèse, nous avons étudié les effets 

d’une exposition chronique à différentes concentrations ambiantes en déchets 

azotés sur les paramètres du stress et de la croissance de deux espèces durant 

les phases de grossissement en système de recirculation (RAS) : le poisson-chat 

Africain (Clarias gariepinus) et le sandre doré juvénile (Sander lucioperca).  

 Dans le chapitre 5, les poissons-chats exposés à de fortes 

concentrations d’ammonium ont montré une sévère diminution de leur apport 

alimentaire et de leur taux de croissance lorsqu’ils sont exposés à des 

concentrations supérieures à 90 μM. La morphologie branchiale a été affectée 

graduellement avec les concertations croissantes ambiantes en ammonium. Une 

sévère hypertrophie de l’épithélium accompagnée de fusions lamellaires a été 

observée à la plus forte concentration ambiante testée. Ces modifications ont 

été interprétées comme mécanismes de défense pour augmenter la distance 

entre le milieu extérieur riche en composés toxiques et le milieu intérieur du 

poisson, et ainsi limiter l’afflux passif d’ammonium. Les poissons-chats ont 

réussi de manière remarquable à maintenir leur taux d’ammonium plasmatique 

relativement constant et faibles, même à des niveaux ambiant d’ammonium 

élevés. Les autres paramètres plasmatiques n’ont pas ou peu été affectes; 

seulement pour la plus forte dose testée. Nous conseillons les professionnels de 

l’aquaculture de ne pas dépasser une concentration ambiante en ammonium de 

24 μM afin de prévenir les risques de prise alimentaire réduite, de croissance 

détériorée et de détérioration de la morphologie branchiale chez le poisson-

chat Africain. 

 Le chapitre 6 décrit l’exposition de poisson-chat à différentes 

concentrations en nitrate ambiant. Nous démontrons que les concentrations en 

nitrate plasmatique augmentent progressivement, en parallèle avec les 

concentrations en nitrate ambiantes, pour atteindre le niveau millimolaire (6.6 

mM). La prise alimentaire ainsi que le taux de croissance spécifique n’ont été 

affectés qu’à la concentration ambiante la plus élevée testée (27.0 mM). Les 

niveaux d’hématocrite sanguin, la physiologie plasmatique ainsi que la 
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morphologie et physiologie branchiale sont restées inchangées. Nous 

recommandons de ne pas dépasser une concentration ambiante de 10 mM en 

nitrate afin de prévenir les risques de prise alimentaire réduite, de croissance 

détériorée et de détérioration de la morphologie branchiale chez le poisson-

chat Africain. 

 Dans le chapitre 7, nous démontrons que les concentrations 

plasmatique de nitrite augmentent progressivement, parallèlement avec 

l’augmentation ambiante en nitrite, pour atteindre 32.5 μM à une concentration 

ambiante en nitrite de 928 μM. De plus, cette hausse est accompagnée d’une 

augmentation progressive du nitrate plasmatique avec l’augmentation des 

concentrations de nitrite ambiante, révélant un mécanisme de défense sans-

précédant de détoxification interne (conversion du nitrite plasmatique en 

moins toxique nitrate). Des expériences plus approfondies de ces mécanismes 

chez les poissons téléostéens semble justifiée. Les niveaux d’hématocrite, 

d’hémoglobine et méthémoglobine sanguine, la physiologie plasmatique ainsi 

que la physiologie et morphologie branchiale restent inaffectés, 

indépendamment des concentrations ambiantes en nitrite étudiées. Nous 

conseillons de ne pas dépasser une concentration ambiante en nitrite de 43 μM 

pour prévenir les risques de prise alimentaire réduite, de croissance détériorée 

et de détérioration de la morphologie branchiale chez le poisson-chat Africain. 

 Dans le chapitre 8, nous avons exposé des sandres dorés juvéniles à 

différentes concentrations ambiantes en ammonium et nitrate. Les 

concentrations plasmatiques en ammonium ont été strictement régulées 

jusqu'à une concentration ambiante de 11.2 μM, mais à la concentration 

maximale étudiée, les concentrations plasmatiques ont atteint le niveau 

millimolaire (1.4 μM). Les concentrations plasmatiques en nitrate ont augmenté 

de manière linéaire jusqu'à 6 mM, atteints à la plus forte concentration en 

nitrate étudiée. Pour les deux études, les taux d’hématocrite sanguin, la 

physiologie plasmatique ainsi que la physiologie et morphologie branchiale 

n’ont pas été affectés. La croissance a été affectée par une concentration en 

ammonium de 11.2 μM, mais n’a pas été affectée pour aucune concentration en 

nitrate de la gamme étudiée. Nous recommandons de ne pas excéder une 

concentration ambiante de 25.6 mM NO3
- (la concentration maximale étudiée) 

et 3.4 μM NH4
+

 pour prévenir les risques de croissance détériorée chez sandre 

doré juvénile. 

 Compte tenu des différentes tolérances des deux espèces aux différents 

déchets azotés étudiés, nous préconisons que la sensibilité/tolérance envers 

ces composants déchets azotés doit être étudiée pour toutes les espèces 

d’intérêt aquacole, en tenant compte de leur stade de développement.  
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together with her husband, Guy Charmantier, a long-lasting fructuous 
collaboration. I was glad to be part of it myself with my yearly lectures in the 
‘Ecology’ course. I would like to thank Mr. and Mrs. Charmantier for their trust 
and kindness that was at the origin of this journey. 

 I met Gert during his lecture in Montpellier, at the end of it, I shyly 
approached him and introduced myself; ‘I am supposed to be your student’. 
What was supposed to be a 3 month stay in the Netherlands lasted more than 6 
years. After completing the internship, Gert agreed that I perform the second 
year of Master. Meanwhile, he was writing together with Hans van de Vis the 
current PhD project that they trusted me to work on. Wout, freshly appointed 
junior researcher at IMARES was my daily supervisor.  

 I am very grateful to Gert for the trust you had in me from the 
beginning. You gave me a lot of freedom with designing and arranging the 
experiments, my working schedule and my holidays. I could always count on 
your support, kindness and generosity. You were a very good supervisor and 
head of department as you are hard working, but also understands that there 
are other things in life and allowed us to do all the activities with the 
departments. Most of all, I enjoyed our yearly teaching trips to Montpellier.  

 Wout, thank you for my daily-weekly supervision. It was a pleasure to 
be your first-supervised PhD. I enjoyed the work we did together. Thank you for 
your trust and the freedom you gave me with organizing my schedule and my 
experiments. I always liked the side-experiments you got me involved in, it was 
nice to travel around and try different things. 

 Hans, we first met when we were trying to set-up an experiment with 
eels in Madagascar. The project aborted quickly, independently of our will, but I 
was the start of our collaboration. I am grateful for your advices and 
suggestions, as well as for your material and human support from IMARES.  

  Daisy, you helped me in so many occasions, thank you very much for 
your help and your kindness. It was always a pleasure to drop by in your office 
for some chatting.  
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learnt my lesson and latter on focused on easier species! Thank you for your 
help with the fish as well as for your precious advices.  

 I am grateful for the students that helped me with the different 
projects: Femke, you were my first official, good job with the mucus cell 
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nectaire ! Yanick, bon travail avec les poissons-chats et les dimanches pour les 
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Jeroen ‘Postbode’, it was fun to be cubical-mates, discussing about 
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finalizing this thesis. Yvette, the other (part-time) cubical mate and coin 
collector (only for cool-people). Stefan ‘Bokito’, one day neither Jeroen nor me 
were there and we found latter our cubical totally changed, with you in it. Next 
day we rearranged our desks the same way, Jeroen K, the unofficial member of 
the department, Juriaan which family kept on growing during my stay in The 
Netherland, as well as, Kasper, Clara, Martha, Edwin and the other persons that 
were once in this department. 

I am grateful to the staff of the department and the other collaborating 
cells for their held and advices: Peter K., I admire your scientific spirit and 
dedication, Ron, thank you for your kindness and your help with the fish during 



191 

week-end shifts. Jan, Tony, Liesebeth, Walter (R.I.P), Jelle, Geert-Jan and Wim A. 
thank you for your assistance.  

 Wout and Hans got me involved into different interesting projects, 
thanks again for that, and thank you the collaborators and co-authors that were 
involved in them. First of all, Edward, the two first catfish projects that are in 
this thesis are your ideas. Thank you for involving me in them and your trust. 
Ainhoa, it was always very nice to go to Yerseke once in a while to sample the 
seriola (they also taste good!). I guess we tested everything parameters in the 
end so they can be cultured in Europe! Thank you as well to the other co-
authors and collaborators that I had the occasion to work with; Ruud, thank you 
for the nice discussions on behavior and Paris, thanks for being part of the 
committee and I am sorry I misspelled your name in one our papers… Dirk, 
Pepijn, Henk, Angelo, Femke, Tiedo and Gavin, and to the people that helped me 
with their advices and articles: Lynne Sneddon, Bruce Lynn, Lauriane Michel, 
Mark Westerink, Allan Kalueff and Jonathan Cachat. Divna and Liliane, Хвала 
вам на љубазности. 
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Tamas, Gea, Feico. Peter C., thank you for your help and your good mood, your 
enthusiasm and your singing in the lab. People downstairs in the ecology 
department are lucky to have you now. Eric, thank you very much for your help 
with finalizing this manuscript. 
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those (too little) occasions, for some crazy dancing and other fun activities. 
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Anny and Johannes, it was worth it to leave in Den Bosch to be 
neighbors for almost 2 years, so easy to jump on the floor/knock on the ceiling 
to announce that the diner was ready or that it was time to play games. Nice 
trips to Terschelling and France.  

Steve and Chin Chin, it was always nice to come to 
Amsterdam/Amstelveen or to have you in Nijmegen for a cozy week-end with 
nice food, chats and board games. 

Vitoria than you for starting the Friday’s (latter became Sunday’s) 
basketball and introducing me to the CNS people (and Co.). We had a lot of fun 
together with the basketball, the impro-club Ya-γ-moto, board games, 
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barbecues, parties ect. Kriss, Ioannis and Maria, Declan (‘everybody knows 
Declan!’), Marius, thank you for the wonderful trips to Austria, although I lost y 
knee in the second), Matthias (where are you now !?!), Daphne, Giovanni, Tom, 
Flora, Paul, Steve and Vicky, Rocio and Freek, Daniel, Santosh, Ming, Suzanne, 
Lauriane, Lie, Tang, Jiankang,… Ashley, the volleyball, tennis and pubquiz 
master.  

Michalis and Svetlana, thank you for the lovely evenings, your 
sweetness and generosity (and Michalis sweatiness on the basketball court), all 
the laughs we had together and the trips we made together (RHCP, Austria, 
Fantasialand, the CNS sailing week-end, numerous games nights and civilization 
V week-ends, and of course Greece in 2012 with Tix and Catalina, and Skiathos 
in 2013; those holidays with the 6 of us were simply fantastic). 

Christian and Carmen, we had lovely time being neighbors, thank you 
for the parties, the diners and games and the sports. Constantin-Codrut (You 
can claim I don’t know how to pronounce it, but at least I got the spelling right!) 
my dear room-mate we had fun with a lot of things, too bad that Skyrim was 
only playable by one player, but we had borderlands 1 with co-op mode!  

Cheng Huaaaaaaaaaa, thank you for your enthusiasm and your energy 
on the stage. It was always nice to hear the door bell ringing and do improvised 
activities. Thank you for introducing me to Carcassonne, and the games we still 
played online. 

 Malte, the king of impro, on the stage and outside, it was always to do 
unplanned activities, do and talk about crazy things, watch western movies and 
play some music together. What nice surprises that you still ring the bell and 
join our rehearsals when you surprise-visit Nijmegen. What’s wrong, this 
picture?  

Bronagh, Jeff, Toru and Nietz, my band-mates, thank you for the time 
we rocked together with instruments and elsewhere, for making me pick the 
bass guitar again. And don’t forget; it’s a small world after all! We had fun! Jeff, 
thank you for your patience while (trying to) teach me music and making me 
discover good artists, Nietz my rhythmic-section, gym (until I dropped out…), 
basketball partner and NBA-fan mate. Just too bad that you chose the Spurs 
over the Mavericks…  

Aux amis de LBO et BGAE, revus depuis lors de leurs traditionnelles 
montées aux Pays Bas ou de mes descentes lors des non-moins traditionnelles 
lectures d’Ecology. Merci de vos visites, et merci pour mes provisions de 
produits gastronomiques et culturels (BD’s): David et Olivier, Jeremy, Lola et 
Olivier (merci pour l’aide apportée pour mon résumé en français), Melanie, 
Anne-Claire, Romain, Lucille et Manu, l’autre expat’ de doctorat. Aurore R, le 
temps de la prepa est loin et révolu, merci de ton soutient durant cette période 
et de ton amitié depuis.  
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visite ou que nous avons visités. Loin des yeux mais pas loin du cœur. Je suis 
désolé pour les traditionnelles randos que je n’ai pas pu joindre. Etienne, mon 
pote aventurier, quand j’y repense on aurait du se voir plus souvent lors de ton 
sejour sur Amsterdam, Anne, Flo et Flo, Daye, Cécile, Marine, Doudou et Juliette, 
Clément et Julie, Yatrika et François-Nicolas, Malik. 

The Rabdal team, thank you for welcoming me in. Tuesdays were holy-
days and tournaments here and there were fun: Lucky Skywalker that quickly 
nicknamed me ‘Chocka’, Eric and Erik, Sip, Johnny, Naima, Roberto, Martini, 
Bart, Joris, Floor, Anneke, Elles, Bianca, Joke, Philip, Sietze, Anchel, Antoine, 
Jochem, and Pim. It was fun to be a trainer: Alright, 2 balls, 2 lines, Spelen!!!  

Thank you to the people that were around and helped me during the 
surgery and rehabilitation period, some already mentioned, Leo and Michalis 
for the rides to the clinic, Dr Donk and his crew at ViaSana, Patricia, Anne and 
Jos my physiotherapists that followed me and helped me for months, and my 
dear friend, ex-neighbor and unofficial chiropractor Jacob with his previous 
advices and program. 

Thanks to the people that helped me out and made me work in very 
different areas than science while finishing this thesis; Lu and Leo, Andrew, 
Henry, Adil, Radbal and the Donder’s friends. 

Thank you to Emil and his team that always helped me to fix my bike!  

Many thanks to Kiyoko for the cool design of the cover of this thesis; 
when I opened the picture, I was really like ‘Wahoo, so cool!!!’. 

Merci a ma famille qui certainement ne pourra pas lire tout le contenu 
de cette thèse , mais elle a malgré tout été rendue possible grâce a eux. 
Maman et papa pour soutient, leur support moral et financier qui m’ont permis 
de poursuivre mes études aux Pays Bas, et pendant ma convalescence. A ma 
petite sœur Rebecca, notamment la semaine passée ensemble ici a été super, 
puis les 3 semaines de ‘stage’ et bougnagnas durant ma convalescence, avec le 
concerts des Kaisers Orchestra. Papy qui lui aussi est passionné par les 
poissons, mamy Vivianne, tonton Gérard, tatie Claudia, Christel et Quentin, 
Justine, et a la mémoire de papy Charlie et mamy Jeanne. Papé et mamé, 
Maribel, Manu et les enfants, Françoise, Patrick, Melo, merci pour Châtaigne! 

I am also grateful to all the fish that were sacrificed for the completion 
of this thesis. I hope that at least with it I could bring some more scientific 
evidences that these animals deserve consideration.  

Last but not least, Mimi, thank you for everything, for loving me for 
what I am and being at my side from the beginning of this thesis and for long 
after, now along with T-2. Gaou. 
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Appendices 

 

Appendix 1. Swimming profile of the experimental fish on day 1. 1A. control (N=7), 1B. FC D1 
(receiving the fin clip) (N=8), 1C. FC D5 (N=7. Only 7 profiles are displayed because of a technical 
camera problem we were not able to analyze the profile of one fish on that day).  
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Appendix 2. Swimming profile of the experimental fish on day 5. 2A. control (N=7), 2B. FC D1 
(N=8), 2C. FC D5 (receiving the fin clip) (N=8). 


